Skip to main content
Log in

Dependence of the refractive index on density, temperature, and the wavelength of the incident light

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The refractive index of dielectrics is a function of the density, temperature, and the wavelength of the incident light. The refractive index and material dispersion are determined by the plasma and the resonance frequencies. Physically, the forced oscillation of an induced dipole is driven by the light wave, vibrating in the plane perpendicular to the propagation direction of light. The incident light is absorbed at the resonance frequency. In this case, the induced dipole is transformed into independent neutral oscillator (atom). Yet, the forced oscillation of the dipole and the thermal motion of the atom have different vibration modes. Each mode carries out thermal energy. The incident light should overcome the thermal energy to excite the vibration modes of the dipoles. These features lead to the temperature-dependent plasma and resonance frequencies, and consequently yield the temperature-dependent refractive index and material dispersion. Moreover, the change of refractive index with temperature is found to relate with specific heat capacity. The proposed approach is applied for analyzing the refractive index of silica glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All dada analysed during this study are included in this published article and the cited references.]

References

  1. I.H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965)

    Article  ADS  Google Scholar 

  2. C.Z. Tan, J. Non-Cryst, Solids 223, 158 (1998)

    Google Scholar 

  3. C.Z. Tan, J. Non-Cryst, Solids 238, 30 (1998)

    Google Scholar 

  4. C.Z. Tan, J. Arndt, J. Phys. Chem. Solids 62, 1087 (2001)

    Article  ADS  Google Scholar 

  5. C.Z. Tan, J. Arndt, Physica B 229, 217 (1997)

    Article  ADS  Google Scholar 

  6. C.Z. Tan, Physica B 269, 373 (1999)

    Article  ADS  Google Scholar 

  7. L. Prod’homme, Phys. Chem. Glasses 1, 119 (1960)

  8. C. Z. Tan, J. Arndt, Physica B 233, Nos. 2&3 addendum (1997)

  9. C.Z. Tan, J. Arndt, H.S. Xie, Physica B 252, 28 (1998)

    Article  ADS  Google Scholar 

  10. C. Z. Tan, J. Arndt, The refractive index of silica glass and its dependence on pressure, temperature, and the wavelength of the incident light, in Silicon-Based Materials and Devices, Vol. 2, chap. 2, edited by H. S. Nalwa (Academic Press, New York, 2001)

  11. J.D. Jackson, Classical electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  12. C.Z. Tan, Optik 168, 864 (2018)

    Article  ADS  Google Scholar 

  13. C. Kittel, Thermal physics (Wiley, New York, 1969)

    Google Scholar 

  14. C. Kittel, Introduction to solid state physics (Wiley, New York, 1996)

    MATH  Google Scholar 

  15. B.H. Bransden, C.J. Joachain, Introduction to quantum mechanics (Wiley, New York, 1989)

    Google Scholar 

  16. M. Born, E. Wolf, Principles of optics (Pergamon Press, Oxford, 1984)

    MATH  Google Scholar 

  17. J.H. Wray, J.T. Neu, J. Opt. Soc. Am. 59, 774 (1969)

    Article  ADS  Google Scholar 

  18. R.M. Waxler, G.W. Cleek, J. Res. Natl. Bur. Stand. A 75, 279 (1971)

    Article  Google Scholar 

  19. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, J. Non-Cryst, Solids 135, 86 (1991)

    Google Scholar 

  20. N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, M. Kinoshita, J. Non-Cryst, Solids 159, 241 (1993)

    Google Scholar 

  21. P.W. Bridgmann, I. Simon, J. Appl. Phys. 24, 405 (1953)

    Article  ADS  Google Scholar 

  22. J.D. Mackenzie, J. Am Ceram. Soc. 46, 461 (1963)

    Article  Google Scholar 

  23. J. Arndt, D. Stöffler, Phys. Chem. Glasses 10, 117 (1969)

    Google Scholar 

  24. W. Primak, Phys. Rev. 110, 1240 (1968)

    Article  ADS  Google Scholar 

  25. V.N. Bogdanov, I.M. Brovchenko, L.V. Maksimov, A.R. Silin, O.V. Yanush, Phys. Stat. Sol. (a) 119, 621 (1990)

    Article  ADS  Google Scholar 

  26. L.M. Landsberger, W.A. Tiller, Appl. Phys. Lett. 51, 1416 (1987)

    Article  ADS  Google Scholar 

  27. H. Kakiuchida, N. Shimodaira, E.H. Sekiya, K. Saito, A.J. Ikushima, Appl. Phys. Lett. 86, 161907 (2005)

    Article  ADS  Google Scholar 

  28. N. Kitamura, K. Fukumi, J. Nishii, J. Appl. Phys. 101, 123533 (2007)

    Article  ADS  Google Scholar 

  29. O. Davronov, G.A. Berzovsky, J. Thermal. Anal. 33, 749 (1988)

    Article  Google Scholar 

  30. R.C. Lord, J.C. Morrow, J. Chem. Phys. 26, 230 (1957)

    Article  ADS  Google Scholar 

  31. N.P. Bansal, R.H. Doremus, Handbook of Glass Properties (Academic Press Inc, New York, 1986)

    Google Scholar 

  32. L.E. Reichl, A modern course in statistic physics (The University of Texas Press, Austin, 1980)

    Google Scholar 

  33. R.C. Zeller, R.O. Pohl, Phys. Rev. B 4, 2029 (1971)

    Article  ADS  Google Scholar 

  34. P.J. Mohr, D.B. Newell, B.N. Taylor, J. Phys. Chem. Ref. Data 45, 043102 (2016)

    Article  ADS  Google Scholar 

  35. C.Z. Tan, L. Chen, Opt. Lett. 32, 2936 (2007)

    Article  ADS  Google Scholar 

  36. C.Z. Tan, Opt. Express 16, 14675 (2008)

    Article  ADS  Google Scholar 

  37. C.Z. Tan, J. Phys. A 43, 354007 (2010)

    Article  Google Scholar 

  38. C.Z. Tan, Solid State Commun. 131, 405 (2004)

    Article  ADS  Google Scholar 

  39. C.Z. Tan, T.B. Wang, H. Chen, Z.G. Liu, Opt. Lett. 28, 1466 (2003)

    Article  ADS  Google Scholar 

  40. C.Z. Tan, C. Yan, Phys. Lett. A 360, 742 (2007)

    Article  ADS  Google Scholar 

  41. C.Z. Tan, Physica B 404, 2229 (2009)

    Article  ADS  Google Scholar 

  42. S. Wang, M. Ukhtary, R. Saito, Phys. Rev. Res. 2, 033340 (2020)

    Article  Google Scholar 

  43. C. Setty, J. Hu, Phys. Rev. B 89, 180509(R) (2014)

    Article  ADS  Google Scholar 

  44. C.Z. Tan, Optik 127, 3660 (2016)

    Article  ADS  Google Scholar 

  45. C.Z. Tan, Optik 134, 280 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Z. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C.Z. Dependence of the refractive index on density, temperature, and the wavelength of the incident light. Eur. Phys. J. B 94, 139 (2021). https://doi.org/10.1140/epjb/s10051-021-00147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00147-2

Navigation