Skip to main content

Advertisement

Log in

Postnatal Subacute Benzo(a)Pyrene Exposure Caused Neurobehavioral Impairment and Metabolomic Changes of Cerebellum in the Early Adulthood Period of Sprague-Dawley Rats

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Benzo(a)pyrene (BaP) is a widespread environmental contaminant that has been associated with neurotoxicity in mammals. It has strong toxic effects on the developing central nervous system. Cerebellum is associated with locomotor activity and anxiety behavior, but there is very little research about the toxic effects of BaP in cerebellum. The present study aims to investigate the global influence of BaP subacute exposure on the metabolome of rat cerebellum. Male neonatal rats (postnatal day 5) were divided into two groups: control group and BaP-treated group (2 mg/kg/day for 7 weeks). Open field test and transmission electron microscopy were performed to analyze neurobehavior and ultramicrostructure alteration. Gas chromatography-mass spectrometry (GC-MS) was used to analyze metabolites of the cerebellum in both groups. The results revealed that postnatal exposure to BaP promoted pathological changes in the cerebellum and increased locomotor and anxiety activities in early adulthood. Twenty differential significant metabolites were identified by multivariate statistical analysis. Further metabolic pathway impact analysis and network analysis suggested that the primary metabolic pathways affected included pathway involved in energy metabolism, methionine and cysteine metabolism, and glutathione metabolism. These findings suggest that BaP-induced cerebellum injury may be correlated with metabolic changes and provide an area to target to reduce the negative effects of BaP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archibong AE, Inyang F, Ramesh A, Greenwood M, Nayyar T, Kopsombut P, Hood DB, Nyanda AM (2002) Alteration of pregnancy related hormones and fetal survival in F-344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol 16:801–808

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons(PAHs). U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Ba Q, Huang C, Fu Y, Li J, Li J, Chu R, Jia X, Wang H (2016) Cumulative metabolic effects of low-dose benzo(a)pyrene exposure on human cells. Toxicol Res 5(1):107–115

    Article  CAS  Google Scholar 

  • Bakthavachalam P, Shanmugam PS (2017) Mitochondrial dysfunction—silent killer in cerebral ischemia. J Neurol Sci 375:417–423

    Article  CAS  PubMed  Google Scholar 

  • Beard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115(2):297–313

    Article  CAS  PubMed  Google Scholar 

  • Brown LA, Khousbouei H, Goodwin JS, Irvin-Wilson CV, Ramesh A, Sheng L, McCallister MM, Jiang GC, Aschner M, Hood DB (2007) Down-regulation of early ionotrophic glutamate receptor subunit developmental expression as a mechanism for observed plasticity deficits following gestational exposure to benzo(a)pyrene. Neurotoxicology 28(5):965–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Tang Y, Jiang X, Qi Y, Cheng S, Qiu C, Peng B, Tu B (2012) Early postnatal benzo(a)pyrene exposure in Sprague-Dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicol Sci 125(1):248–261

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Song Q, Diao X, Zhou H (2016) Proteomic and metabolomic analysis on the toxicological effects of benzo[a]pyrene in pearl oyster Pinctada martensii. Aquat Toxicol 175:81–89

    Article  CAS  PubMed  Google Scholar 

  • Chengzhi C, Yan T, Shuqun C, Xuejun J, Youbin Q, Yinyin X, Qian T, Baijie T (2011) New candidate proteins for benzo(a)pyrene-induced spatial learning and memory deficits. J Toxicol Sci 36(2):163–171

    Article  PubMed  Google Scholar 

  • Chepelev NL, Moffat ID, Bowers WJ, Yauk CL (2015) Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment. Mutat Res Rev Mutat Res 764:64–89

    Article  CAS  PubMed  Google Scholar 

  • Chepelev NL, Long AS, Bowers WJ, Gagne R, Williams A, Kuo B, Phillips DH, Arlt VM, White PA, Yauk CL (2016) Transcriptional profiling of the mouse hippocampus supports an NMDAR-mediated neurotoxic mode of action for benzo[a]pyrene. Environ Mol Mutagen 57(5):350–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choumenkovitch SF, Selhub J, Bagley PJ, Maeda N, Nadeau MR, Smith DE, Choi SW (2002) In the cystathionine beta-synthase knockout mouse, elevations in total plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-adenosylmethionine and DNA methylation are tissue specific. J Nutr 132(8):2157–2160

    Article  CAS  PubMed  Google Scholar 

  • Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) The 1996 guide for the care and use of laboratoty animals. ILAR J 38:41–48

    Article  PubMed  Google Scholar 

  • Constantinou C, Chrysanthopoulos PK, Margarity M, Klapa MI (2011) GC-MS metabolomic analysis reveals significant alterations in cerebellar metabolic physiology in a mouse model of adult onset hypothyroidism. J Proteome Res 10(2):869–879

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Xia YY, Ting-Li Han TH, Philip NBPN, Tang X, Zhang RY, Du H, Cai TJ, Cheng SQ (2016) Effect of chronic arsenic exposure on mouse brain tissue and serum metabolomics. Nan Fang Yi Ke Da Xue Xue Bao 36(9):1192–1197

    PubMed  Google Scholar 

  • de Lores Arnaiz GR, Ordieres MGL (2014) Brain Na+, K+−ATPase activity in aging and disease. Int J Biomed Sci 10(2):85–102

    PubMed  PubMed Central  Google Scholar 

  • Dong T, Ni J, Wei K, Liang X, Qin Q, Tu B (2015) Effects of benzo(a)pyrene exposure on the ATPase activity and content of Ca(2)(+) in the hippocampus of neonatal SD rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 40(4):356–361

    CAS  PubMed  Google Scholar 

  • Duan L, Tang Y, Chen CZ, Pen B, Qiu CY, Qi YB, Tu BJ (2013) Effects of benzo(a)pyrene exposure on oxidative stress and ATPase in the hippocampus of rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 31(7):500–503

    CAS  PubMed  Google Scholar 

  • Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9(1):2–19

    Article  CAS  PubMed  Google Scholar 

  • Eriksson P (1997) Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology 18(3):719–726

    CAS  PubMed  Google Scholar 

  • Esse R, Imbard A, Florindo C, Gupta S, Quinlivan EP, Davids M, Teerlink T, Tavares de Almeida I, Kruger WD, Blom HJ, Castro R (2014) Protein arginine hypomethylation in a mouse model of cystathionine beta-synthase deficiency. FASEB J 28(6):2686–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7(3):254–261

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom JD (2005) Branched-chain amino acids and brain function. J Nutr 135(6 Suppl):1539S–1546S

    Article  CAS  PubMed  Google Scholar 

  • Gale CR, Walton S, Martyn CN (2003) Foetal and postnatal head growth and risk of cognitive decline in old age. Brain 126(Pt 10):2273–2278

    Article  PubMed  Google Scholar 

  • Gassowska M, Baranowska-Bosiacka I, Moczydlowska J, Frontczak-Baniewicz M, Gewartowska M, Struzynska L, Gutowska I, Chlubek D, Adamczyk A (2016) Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring. Toxicology 373:13–29

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen T, Waisman HA (1964) Homocystinuria: absence of cystathionine in the brain. Science 145(3632):588

    Article  CAS  PubMed  Google Scholar 

  • Gillig PM, Sanders RD (2010) Psychiatry, neurology, and the role of the cerebellum. Psychiatry (Edgmont) 7(9):38–43

    Google Scholar 

  • Glickstein M, Doron K (2008) Cerebellum: connections and functions. Cerebellum 7(4):589–594

    Article  PubMed  Google Scholar 

  • Gomez J, Sanchez-Roman I, Gomez A, Sanchez C, Suarez H, Lopez-Torres M, Barja G (2011) Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr 43(4):377–386

    Article  CAS  PubMed  Google Scholar 

  • Grova N, Schroeder H, Farinelle S, Prodhomme E, Valley A, Muller CP (2008) Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors genes in relevant brain regions. Chemosphere 73(1 Suppl):S295–S302

    Article  CAS  PubMed  Google Scholar 

  • Habas C (2001) The cerebellum: from motor coordination to cognitive function. Rev Neurol (Paris) 157(12):1471–1497

    CAS  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, Eqani SA, Shen H (2016) Integrated proteomics and metabolomics analysis of rat testis: mechanism of arsenic-induced male reproductive toxicity. Sci Rep 6:32518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager C, Hiller K, Buttini M (2016) Metabolic profiling and quantification of neurotransmitters in mouse brain by gas chromatography-mass spectrometry. Curr Protoc Mouse Biol 6(3):333–342

    Article  PubMed  Google Scholar 

  • Kalkhof S, Dautel F, Loguercio S, Baumann S, Trump S, Jungnickel H, Otto W, Rudzok S, Potratz S, Luch A, Lehmann I, Beyer A, von Bergen M (2015) Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure. J Proteome Res 14(1):164–182

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Won R, Sohn JH, Chung MA, Nam TS, Lee HJ, Lee BH (2008) Anti-oxidant effect of ascorbic and dehydroascorbic acids in hippocampal slice culture. Biochem Biophys Res Commun 366(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Kimball BA, Wilson DA, Wesson DW (2016) Alterations of the volatile metabolome in mouse models of Alzheimer’s disease. Sci Rep 6:19495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckles ME, Inyang F, Ramesh A (2001) Acute and subchronic oral toxicities of benzo[a]pyrene in F-344 rats. Toxicol Sci 60:382–388

    Article  Google Scholar 

  • Kurauchi Y, Hisatsune A, Seki T, Katsuki H (2016) Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures. Brain Res 1644:249–257

    Article  CAS  PubMed  Google Scholar 

  • Lage S, Andrade F, Prieto JA, Asla I, Rodriguez A, Ruiz N, Echeverria J, Luz Couce M, Sanjurjo P, Aldamiz-Echevarria L (2013) Arginine-guanidinoacetate-creatine pathway in preterm newborns: creatine biosynthesis in newborns. J Pediatr Endocrinol Metab 26(1–2):53–60

    CAS  PubMed  Google Scholar 

  • Liu B, Gu Y, Xiao H, Lei X, Liang W, Zhang J (2015) Altered metabolomic profiles may be associated with sevoflurane-induced neurotoxicity in neonatal rats. Neurochem Res 40(4):788–799

    Article  CAS  PubMed  Google Scholar 

  • Miller AL (2003) The methionine-homocysteine cycle and its effects on cognitive diseases. Altern Med Rev 8(1):7–19

    PubMed  Google Scholar 

  • Naz S, dos Santos DCM, García A, Barbas C (2014) Analytical protocols based on LC–MS, GC–MS and CE–MS for nontargeted metabolomics of biological tissues.pdf. Bioanalysis 1757–6180:1657–1677

    Article  Google Scholar 

  • Niu Q, Zhang H, Li X, Li M (2010) Benzo[a]pyrene-induced neurobehavioral function and neurotransmitter alterations in coke oven workers. Occup Environ Med 67(7):444–448

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Das SK, Patri M (2016) Neonatal benzo[a]pyrene exposure induces oxidative stress and DNA damage causing Neurobehavioural changes during the early adolescence period in rats. Dev Neurosci 38(2):150–162

    Article  CAS  PubMed  Google Scholar 

  • Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, Camann D, Rauh V (2012) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect 120(6):921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM (2013) ROS and brain diseases: the good, the bad, and the ugly. Oxidative Med Cell Longev 2013:963520

    Article  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Peng B, Cheng S, Xia Y, Tu B (2013) The effect of occupational exposure to benzo[a]pyrene on neurobehavioral function in coke oven workers. Am J Ind Med 56(3):347–355

    Article  CAS  PubMed  Google Scholar 

  • Reitzer L (2004) Biosynthesis of glutamate, aspartate, asparagine, L-alanine, and D-alanine. EcoSal Plus 1(1)

  • Robert K, Vialard F, Thiery E, Toyama K, Sinet PM, Janel N, London J (2003) Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem 51(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103(6):73–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, T. B. and S. Cerdán (2007). 1.4 the cerebral tricarboxylic acid cycles. 63–91

  • Saiki S, Yamaguchi K, Chijiiwa K, Shimizu S, Hamasaki N, Tanaka M (1997) Phosphoenolpyruvate prevents the decline in hepatic ATP and energy charge after ischemia and reperfusion injury in rats. J Surg Res 73(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Saunders CR, Ramesh A, Shockley DC (2002) Modulation of neurotoxic behavior in F-344 rats by temporal disposition of benzo(a)pyrene. Toxicol Lett 129:33–45

    Article  CAS  PubMed  Google Scholar 

  • Smart KF, Aggio RB, Van Houtte JR, Villas-Boas SG (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat Protoc 5(10):1709–1729

    Article  CAS  PubMed  Google Scholar 

  • Tatem KS, Quinn JL, Phadke A, Yu Q, Gordish-Dressman H, Nagaraju K (2014) Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp 91:51785

    Google Scholar 

  • Tchekalarova J, Kubova H, Mares P (2005) Postnatal caffeine exposure: effects on motor skills and locomotor activity during ontogenesis. Behav Brain Res 160(1):99–106

    Article  CAS  PubMed  Google Scholar 

  • Thomas MM, Sulek K, McKenzie EJ, Jones B, Han TL, Villas-Boas SG, Kenny LC, McCowan LM, Baker PN (2015) Metabolite profile of cervicovaginal fluids from early pregnancy is not predictive of spontaneous preterm birth. Int J Mol Sci 16(11):27741–27748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonin AM, Ferreira GC, Schuck PF, Viegas CM, Zanatta A, Leipnitz G, Seminotti B, Duvall Wannmacher CM, Wajner M (2009) Inhibition of creatine kinase activity by lysine in rat cerebral cortex. Metab Brain Dis 24(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Troen AM (2005) The central nervous system in animal models of hyperhomocysteinemia. Prog Neuro-Psychopharmacol Biol Psychiatry 29(7):1140–1151

    Article  CAS  Google Scholar 

  • Viberg H, Mundy W, Eriksson P (2008) Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29(1):152–159

    Article  CAS  PubMed  Google Scholar 

  • Villa RF, Ferrari F, Gorini A (2013) ATP-ases of synaptic plasma membranes in striatum: enzymatic systems for synapses functionality by in vivo administration of L-acetylcarnitine in relation to Parkinson’s disease. Neuroscience 248:414–426

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang J, Huang Q, Alamdar A, Tian M, Liu L, Shen H (2015) Serum metabolomics analysis reveals impaired lipid metabolism in rats after oral exposure to benzo(a)pyrene. Mol BioSyst 11(3):753–759

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Article  CAS  PubMed  Google Scholar 

  • Wyse AT, Netto CA (2011) Behavioral and neurochemical effects of proline. Metab Brain Dis 26(3):159–172

    Article  CAS  PubMed  Google Scholar 

  • Xu MY, Sun YJ, Wang P, Xu HY, Chen LP, Zhu L, Wu YJ (2015) Metabolomics analysis and biomarker identification for brains of rats exposed subchronically to the mixtures of low-dose cadmium and chlorpyrifos. Chem Res Toxicol 28(6):1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Chen C, Cheng S, Cao X, Tu B (2017) Effects of benzo(a)pyrene exposure on the ATPase activity and calcium concentration in the hippocampus of neonatal rats. Int J Occup Med Environ Health 30(2):203–211

    PubMed  Google Scholar 

  • Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10(2):179–206

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Nie J, Li X, Niu Q (2013) Association of aryl hydrocarbon receptor gene polymorphism with the neurobehavioral function and autonomic nervous system function changes induced by benzo[a]pyrene exposure in coke oven workers. J Occup Environ Med 55(3):265–271

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu X, You L, Zhou D, Wang Q, Li F, Cong M, Li L, Zhao J, Liu D, Yu J, Wu H (2011) Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance ((1)H NMR) based metabolomics. Environ Toxicol Pharmacol 32(2):218–225

    CAS  PubMed  Google Scholar 

  • Zhou X, Liu L, Zhang Y, Pu J, Yang L, Zhou C, Yuan S, Zhang H, Xie P (2016) Metabolomics identifies perturbations in amino acid metabolism in the prefrontal cortex of the learned helplessness rat model of depression. Neuroscience 343:1–9

    Article  PubMed  Google Scholar 

Download references

Funding

This report was financially supported by National Natural Science Foundation of China (Grant No. 81502777 and Grant No. 81372957).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baijie Tu or Yinyin Xia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest in the submission of this manuscript.

Electronic Supplementary Material

ESM 1

(XLSX 28 kb)

ESM 2

(DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, J., Su, Q. et al. Postnatal Subacute Benzo(a)Pyrene Exposure Caused Neurobehavioral Impairment and Metabolomic Changes of Cerebellum in the Early Adulthood Period of Sprague-Dawley Rats. Neurotox Res 33, 812–823 (2018). https://doi.org/10.1007/s12640-017-9832-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9832-8

Keywords

Navigation