Skip to main content
Log in

T- and Q-rich Linear Silicones from the Piers-Rubinsztajn Reaction

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Most silicone polymers are linear compounds derived from dimethylsiloxane (D) monomers; the incorporation of tri- (T) and tetra-functional (Q) monomers usually leads to elastomers. MQ or MT resins, high value materials used as reinforcing agents, are exceptions in that they are very highly branched, and highly reticulated but remain mobile and fluid. We report the formation of analogous linear T- and Q-rich polymers. The Piers-Rubinsztajn (PR) reaction between Si(OEt)4 and HSiMe(OSiMe3)2 led to mixtures of highly branched monomers that were separated by distillation to provide mono- and dialkoxy-Q monomers. Chain extension, also using the PR reaction with telechelic HSi-modified silanes, led to small to medium size linear polymers that were rich in T and Q groups. The polymers were mobile fluids, typically with only slightly higher viscosities than their unbranched counterparts. Alternating silphenylene Q(TM2)2 copolymers were also fluids as a consequence of steric inhibition of aromatic group association. The PR reaction provides a simple and viable strategy to introduce spatially controlled branching in pure, linear silicone polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data for this paper may be found in the main text and Supplementary Information.

References

  1. Morgan J, Chen T, Hayes R, Dickie T, Urlich T, Brook MA (2017) Facile synthesis of dendron-branched silicone polymers. Polym Chem 8(18):2743–2746. https://doi.org/10.1039/C7PY00260B

    Article  CAS  Google Scholar 

  2. Madsen FB, Dimitrov I, Daugaard AE, Hvilsted S, Skov AL (2013) Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym Chem 4(5):1700–1707. https://doi.org/10.1039/C2PY20966G

    Article  CAS  Google Scholar 

  3. Brook MA (2000) Silicones. Silicon in organic, organometallic and polymer chemistry. Wiley, New York, pp 256–308

    Google Scholar 

  4. Tatarinova E, Vasilenko N, Muzafarov A (2017) Synthesis and properties of MQ copolymers: current state of knowledge. Molecules 22(10). https://doi.org/10.3390/molecules22101768

  5. Flagg DH, McCarthy TJ (2016) Rediscovering silicones: MQ copolymers. Macromolecules 49(22):8581–8592. https://doi.org/10.1021/acs.macromol.6b01852

    Article  CAS  Google Scholar 

  6. Huang Z, Wu J, Liu X, Ji H, He R, Liu R, Pimhataivoot P, Chen X (2018) Versatile Cascade Esterification Route to MQ Resins. ACS Omega 3(4):4054–4062. https://doi.org/10.1021/acsomega.8b00121

    Article  CAS  Google Scholar 

  7. Zheng S, Liang S, Chen Y, Brook MA (2019) Hyperbranched silicone MDTQ tack promoters. Molecules 24(22):4133. https://doi.org/10.3390/molecules24224133

    Article  CAS  Google Scholar 

  8. Schmidt RG, Gordon GV, Dreiss CA, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM (2010) A critical size ratio for viscosity reduction in poly(dimethylsiloxane)−Polysilicate nanocomposites. Macromolecules 43(23):10143–10151. https://doi.org/10.1021/ma1004919

    Article  CAS  Google Scholar 

  9. Charlesby A (1955) Viscosity measurements in branched silicones. J Polym Sci 17:379–390. https://doi.org/10.1002/pol.1955.120178506

    Article  CAS  Google Scholar 

  10. Villar MA, Vallés EM (1996) Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 2. Viscoelastic properties. Macromolecules 29(11):4081–4089. https://doi.org/10.1021/ma9506602

    Article  CAS  Google Scholar 

  11. Bibbo MA, Valles EM (1984) Influence of pendant chains on the loss modulus of model networks. Macromolecules 17(3):360–365. https://doi.org/10.1021/ma00133a018

    Article  CAS  Google Scholar 

  12. Muzafarov AM, Rebrov EA (2008) From the discovery of sodiumoxyorganoalkoxysilanes to the organosilicon dendrimers and back. J Polym Sci A Polym Chem 46(15):4935–4948. https://doi.org/10.1002/pola.22795

    Article  CAS  Google Scholar 

  13. Boldyrev K, Tatarinova E, Meshkov I, Vasilenko N, Buzin M, Novikov R, Vasil'ev V, Shtykova E, Feigin L, Bystrova A, Chvalun S, Muzafarov A (2019) New approach to the synthesis of polymethylsilsesquioxane dendrimers. Polymer 174:159–169. https://doi.org/10.1016/j.polymer.2019.04.030

    Article  CAS  Google Scholar 

  14. Brook MA, Grande JB, Ganachaud F (2011) New synthetic strategies for structured silicones using B(C6F5)3. In: Muzafarov AM (ed) Silicon polymers. Springer, Berlin, pp 161–183. https://doi.org/10.1007/12_2009_47

    Chapter  Google Scholar 

  15. Brook MA (2018) New control over silicone synthesis using SiH chemistry: the Piers–Rubinsztajn reaction. Chem Eur J 24(34):8458–8469. https://doi.org/10.1002/chem.201800123

    Article  CAS  Google Scholar 

  16. Piers WE (2004) The chemistry of Perfluoroaryl boranes. Advances in organometallic chemistry, vol 52. Academic Press, Cambridge, pp 1–76. https://doi.org/10.1016/S0065-3055(04)52001-4

    Chapter  Google Scholar 

  17. Rubinsztajn S, Cella JA (2005) A new Polycondensation process for the preparation of Polysiloxane copolymers. Macromolecules 38(4):1061–1063. https://doi.org/10.1021/ma047984n

    Article  CAS  Google Scholar 

  18. Thompson DB, Brook MA (2008) Rapid assembly of complex 3D siloxane architectures. J Am Chem Soc 130(1):32–33. https://doi.org/10.1021/ja0778491

    Article  CAS  Google Scholar 

  19. Liao M, Chen Y, Brook MA (2021) Spatially controlled highly branched Vinylsilicones. Polymers 13(6). https://doi.org/10.3390/polym13060859

  20. Melendez-Zamudio M, Chavda K, Brook MA (2022) Chelating silicone Dendrons: trying to impact organisms by disrupting ions at interfaces. Molecules 27(6). https://doi.org/10.3390/molecules27061869

  21. Mourey TH, Turner SR, Rubinstein M, Frechet JMJ, Hawker CJ, Wooley KL (1992) Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 25(9):2401–2406. https://doi.org/10.1021/ma00035a017

    Article  CAS  Google Scholar 

  22. Kocienski P (2005) Protecting groups3rd edn. Thieme, Stuttgart

    Google Scholar 

  23. Wuts PGM, Greene TW (2006) Greene's protective groups in organic synthesis4th edn. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  24. Silicone Fluids: Stable, Inert Media, in Silicon Compounds: Silanes & Silicones, Gelest, Inc., 11 East Steel Road, Morrisville, PA 19067 USA; downloaded from http://www.gelest.com/literature.asp Dec. 2014

  25. Liang S, Wong MY, Schneider A, Liao M, Kräuter G, Tchoul M, Chen Y, Brook MA (2020) Transparent Silphenylene elastomers from highly branched monomers. Polym Chem. https://doi.org/10.1039/D0PY01148G

  26. Dvornic PR, Lenz RW (1994) Exactly alternating silarylene-siloxane polymers. 10. Synthesis and characterization of silphenylene-siloxane polymers containing fluoroalkyl and hydrido side groups. Macromolecules 27(20):5833–5838. https://doi.org/10.1021/ma00098a042

    Article  CAS  Google Scholar 

  27. Schneider AF, Laidley E, Brook MA (2019) Facile synthesis of cx(AB)yCx triblock silicone copolymers utilizing moisture mediated living-end chain extension. Macromol Chem Phys 220(8):1800575. https://doi.org/10.1002/macp.201800575

    Article  CAS  Google Scholar 

  28. Tatarinova E, Vasilenko N, Muzafarov A (2017) Synthesis and properties of MQ copolymers: current state of knowledge. Molecules 22(10):1768–1768. https://doi.org/10.3390/molecules22101768

    Article  CAS  Google Scholar 

  29. Mrozek RA, Cole PJ, Otim KJ, Shull KR, Lenhart JL (2011) Influence of solvent size on the mechanical properties and rheology of polydimethylsiloxane-based polymeric gels. Polymer 52(15):3422–3430. https://doi.org/10.1016/j.polymer.2011.05.021

    Article  CAS  Google Scholar 

  30. Okui N, Li HM, Magill JH (1978) Thermal properties of poly(tetramethyl-p-silphenylene siloxane) and (tetramethyl-p-silphenylene siloxane-dimethyl siloxane) copolymers. Polymer 19(4):411–415. https://doi.org/10.1016/0032-3861(78)90247-1

    Article  CAS  Google Scholar 

  31. Magill JH (1964) Crystallization of poly-(Tetramethyl-p-Silphenylene)-siloxane polymers. J Appl Phys 35(11):3249–3259. https://doi.org/10.1063/1.1713206

    Article  CAS  Google Scholar 

  32. Magill JH (1967) Crystallization of poly(tetramethyl-p-silphenylene)-siloxane (TMPS) polymers. Part II. J Polym Sci Part A-2: Polym Physics 5(1):89–99. https://doi.org/10.1002/pol.1967.160050108

    Article  CAS  Google Scholar 

  33. Merker RL, Scott MJ, Haberland GG (1964) Random and block copolymers of poly(tetramethyl-p-silphenylene-siloxane) and polydimethylsiloxane. J Polym Sci Part A: Gen Papers 2(1):31–44. https://doi.org/10.1002/pol.1964.100020103

    Article  Google Scholar 

  34. Dvornic PR, Perpall HJ, Uden PC, Lenz RW (1989) Exactly alternating silarylene–siloxane polymers. VII. Thermal stability and degradation behavior of p-silphenylene–siloxane polymers with methyl, vinyl, hydrido, and/or fluoroalkyl side groups. J Polym Sci A Polym Chem 27(10):3503–3514. https://doi.org/10.1002/pola.1989.080271027

    Article  CAS  Google Scholar 

  35. Liang S, Wong MY, Schneider A, Liao M, Kräuter G, Tchoul MN, Chen Y, Brook MA (2021) Transparent silphenylene elastomers from highly branched monomers. Polym Chem 12(2):209–215. https://doi.org/10.1039/D0PY01148G

    Article  CAS  Google Scholar 

  36. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  37. Schneider AF, Brook MA (2019) High-throughput synthesis and characterization of aryl silicones by using the Piers–Rubinsztajn reaction. Chem Eur J 25(67):15367–15374. https://doi.org/10.1002/chem.201903658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge with gratitude the financial support of the Natural Sciences and Engineering Council of Canada and the Faculty of Science, McMaster University for an equipment grant.

Funding

This research was supported by the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

The original concept of this research was proposed by Dr. Brook. All synthetic research on QT compounds was performed by Dr. Wong. These two coauthors shared the writing activities. Dr. Chen and Dr. Bui provided additional physical characterization, and Dr. Schneider and Mr. Vishnu prepared the D silphenylene polymers for comparison purposes. All authors consent to publication of the work in its current form.

Corresponding author

Correspondence to Michael A. Brook.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to publication of the manuscript in its current form.

Competing Interests

The authors declare they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information associated with this article 1H NMR, 13C NMR, 29Si NMR of M2T2-2, Figure S1-S4.

ESM 1

(DOCX 669 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, M.Y., Vishnu, I.L., Bui, R. et al. T- and Q-rich Linear Silicones from the Piers-Rubinsztajn Reaction. Silicon 15, 887–895 (2023). https://doi.org/10.1007/s12633-022-02064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02064-0

Keywords

Navigation