Skip to main content
Log in

An Overview on Effect of Alloying Elements on the Phase Formation, Mechanical and Oxidation Properties of Nb-Nb Silicide In Situ Composites

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reflects on the potentiality and development of the Nb-Si alloys for the hot section components of the futuristic turbine engine. The Nb-Si alloys consist of ductile Nbss phase as the matrix in which the brittle and oxidation resistant silicide phases (Nb3Si/Nb5Si3) arrange as dispersion or vice-versa. Thereby, the fracture toughness, high temperature strength and creep resistance along with the oxidation resistance can be balanced. However, further improvement in the room temperature fracture toughness, the resistance to intermediate pest damage and the high temperature oxidation is necessary to use them as turbine airfoils. Therefore, the concept of various processing techniques and developing into multicomponent systems has been in practice to obtain better combination of both room and high temperature properties. The present paper highlights the importance of the alloying addition on the phase formation, microstructure, mechanical and oxidation properties and the consolidated literature results are presented. Further, the fracture behavior and the need for the development of new coatings to these alloys are discussed. Finally, the present paper highlights the potentiality of Nb-Si alloys as the hot section material and the future directions of research and development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

References

  1. Bewlay BP, Jackson MR, Zhao J-C, Subramanian PR, Mendiratta MG, Lewandowski JJ (2003a) Ultra high temperature Nb silicide based composites. MRS Bull 646–653

  2. Bewlay BP, Jackson MR, Zhao JC, Subramanian PR (2003b) A Review of very high temperature nb-silicide based composites. Metall Mater Trans A 34:2043–2052

    Article  Google Scholar 

  3. Subramanian PR, Mendiratta MG, Dimiduk DM, Stucke MA (1997) Advanced intermetallic alloys-beyond gamma titanium aluminides. Mater Sci Eng A 239(240):1–13

    Article  Google Scholar 

  4. Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815

    Article  CAS  Google Scholar 

  5. Perepezko JH (2009) The hotter engine, the better. Science 326:1068–1069

    Article  CAS  Google Scholar 

  6. Balsone SJ, Bewlay BP, Jackson MR, Subramanian PR, Zhao JC, Chatterjee A, Heffernan TM (2001) Materials beyond, super alloys-exploiting: high-temperature composites. In: Hemker KJ, Dimiduk DM, Clemens H, Darolia R, Inui H, Larsen JM, Sikka VK, Thomas M, Whittenberger JD (eds) Proceedings of the 2001 Intermetallics Symposium on Structural intermetallics, 99–108. Warrendale: TMS

  7. Pollock TM, Tin S (2006) Nickel based super alloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22(2):361–374

    Article  CAS  Google Scholar 

  8. Tsakiropoulos P (2020) Alloys for application at ultra-high temperatures: Nb-silicide in situ Composites Challenges, breakthroughs and opportunities. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2020.100714

    Article  Google Scholar 

  9. Begley RT, Bechtold JH (1961) Effect of alloying on the mechanical properties of niobium. J Less Common Metals 3:1–12

    Article  CAS  Google Scholar 

  10. Nekkanti RM, Dimiduk DM (1990) Ductile-phase toughening in niobium-niobium silicide powder processed composites. Mater Res Soc Sympos Proc 194:175–182

    Article  CAS  Google Scholar 

  11. Bewlay BP, Jackson MR, Lipsitt HA (1996) The Balance of mechanical and environmental properties of a multi element niobium-niobium silicide based insitu composites. Metall Mater Trans A 27:3801–3808

    Article  Google Scholar 

  12. Wadsworth J, Nieh TG, Stephens JJ (1988) Recent advances in aerospace refractory metal alloys. Int Mater Rev 33:131–150

    Article  CAS  Google Scholar 

  13. Mendiratta MG, Lewandowski JJ, Dimiduk M (1991) Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys. Metallur Transact A 22:1573–1583

    Article  Google Scholar 

  14. Sekido N, Kimura Y, Miura S, Wei F-G, Mishima Y (2006) Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys. J Alloys Comp 425:223–229

    Article  CAS  Google Scholar 

  15. Bewlay BP, Lipsitt HA, Jackson MR, Reeder WJ, Sutliff JA (1995a) Solidification processing of high temperature intermetallic eutectic-based alloys. Mater Sci Eng, A 192(193):534–543

    Article  Google Scholar 

  16. Bewlay BP, Jackson MR, Reeder WJ, Lipsitt HA (1995b) Microstructures and properties of DS in-situ composites of Nb-Ti-Si alloys. Mater Res Soc Symp Proc 364:943–948

    Article  CAS  Google Scholar 

  17. Kim WY, Tanaka H, Hanada S (2002) Microstructure and high temperature strength at 1773 K of Nbss/Nb5Si3 composites alloyed with molybdenum. Intermetallics 10:625–634

    Article  CAS  Google Scholar 

  18. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams. 2nd eddition. ASM International publishers, 3:2767

  19. Schlesinger ME, Okamoto H, Gokhale AB, Abbaschian R (1993) The Nb-Si (Niobium-Silicon) system. Journal of Phase Equilibria 14:502–509

    Article  CAS  Google Scholar 

  20. Tian YX, Guo JT, Sheng LY, Cheng GM, Zhou LZ, He LL, Ye HQ (2008a) Microstructures and mechanical properties of cast Nb–Ti–Si–Zr alloys. Intermetallics 16:807–812

    Article  CAS  Google Scholar 

  21. Sainan Y, Lina J, Linfen S, Limin M, Hu Z (2013) The microstructure evolution of directionally solidified Nb-22Ti-14Si-4Cr-2Al-2Hf alloy during heat treatment. Intermetallics 38:102–106

    Article  Google Scholar 

  22. D. Yonghua (2015) Stability, elastic constants and thermodynamic properties of (α. β, γ) Nb5Si3 phases. Rare Metal Mater Eng 44(1):18–23

  23. Zifu L, Tsakiropoulos P (2010) Study of the effects of Ge addition on the microstructure Nb−18Si in situ composites. Intermetallics 18:1072–1078

    Article  Google Scholar 

  24. Wu M, Wang Y, Li S, Jiang L, Han Y (2010) Effect of Si on microstructure and fracture toughness of directionally solidified Nb Silicide alloys. Int J Mod Phys B 24(15–16):2964–2969

    Article  CAS  Google Scholar 

  25. Sekido N, Kimura Y, Miura S, Mishima Y (2004) Solidification process and mechanical behaviour of the Nb/Nb5Si3 two phase alloys in the Nb-Ti-Si System. Mater Trans 45:3264–3271

    Article  CAS  Google Scholar 

  26. Chan KS (2002a) Modelling creep behavior of niobium silicide in-situ composites. Mater Sci Eng, A 337:59–66

    Article  Google Scholar 

  27. Chan KS (2002b) Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites. Mater Sci Eng, A 329–331:513–522

    Article  Google Scholar 

  28. Chan KS (2018) Intermetallic composites toughened with ductile reinforcements. Intermetallic Matrix Compos Chapter 13:359–407. https://doi.org/10.1016/B978-0-85709-346-2.00013-3

    Article  Google Scholar 

  29. Ma CL, Li JG, Tan Y, Tanaka R, Hanada S (2004) Microstructure and mechanical properties of Nb/Nb5Si3 in situcomposites in Nb–Mo–Si and Nb–W–Si systems. Mater Sci Eng, A 386:375–383

    Article  Google Scholar 

  30. Kim WY, Tanaka H, Kasama A, Hanada S (2001a) Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites. Intermetallics 9:827–834

    Article  CAS  Google Scholar 

  31. Kim WY, Tanaka H, Kasama A, Tanaka R, Hanada S (2001b) Microstructure and room temperature deformation of Nbss/Nb5Si3 in situ composites alloyed with Mo. Intermetallics 9:521–527

    Article  CAS  Google Scholar 

  32. Miura S, Murasato Y, Sekito Y, Tsutsumi Y, Ohkubo K, Kimura Y, Mishima Y, Mohri T (2009) Effect of microstructure on the high-temperature deformation behavior of Nb–Si alloys. Mater Sci Eng, A 510–511:317–321

    Article  Google Scholar 

  33. Muira S, Aoki M, Saeki Y, Ohkubo K, Mishima Y, Mohri T (2005) Effects of Zr on the eutectoid decomposition behavior of Nb3Si into (Nb)/Nb5Si3. Metall Mater Trans A 36:489–496

    Article  Google Scholar 

  34. Bewlay BP, Jackson MR, Bishop RR (1998) The Nb-Ti-Si ternary phase diagram: Determination of solid-state phase equilibria in Nb- and Ti- rich alloys. J Phase Equilib 19(6):577–586

    Article  CAS  Google Scholar 

  35. Grylls RJ, Bewlay BP, Lipsitt HA, Fraser HL (2001) Characterization of silicide precipitates in Nb–Si and Nb–Ti–Si alloys. Philos Mag A 81(8):1967–1978

    Article  CAS  Google Scholar 

  36. Zelenitsas K, Sakiropoulos T (2006) Study of the role of Ta and Cr additions in the microstructure of Nb–Ti–Si-Al in situ composites. Intermetallics 14:639–659

    Article  CAS  Google Scholar 

  37. Sekido N, Kimura Y, Miura S, Mishima Y (2007) Microstructure development of unidirectionally solidified (Nb)/Nb3Si eutectic alloys. Mater Sci Eng, A 444:51–57

    Article  Google Scholar 

  38. Li Z, Peng LM (2007) Microstructural and mechanical characterization of Nb based in situ composites from Nb-Si-Ti ternary system. Acta Mater 55:6573–6585

    Article  CAS  Google Scholar 

  39. Guo E, Singh SS, Kairaa CS, Meng X, Xu Y, Luo L, Wang M, Chawla N (2017) Mechanical properties of micro constituents in Nb-Si-Ti alloy by micropillar compression and nanoindentation. Mater Sci Eng, A 687:99–106

    Article  CAS  Google Scholar 

  40. Qu S, Han Y, Song L (2007) Effects of alloying elements on phase stability in Nb-Si system intermetallics materials. Intermetallics 15:810–813

    Article  CAS  Google Scholar 

  41. Mendiratta MG, Dimiduk DM (1993) Strength and toughness of a Nb/Nb5Si3 composite. Metall Trans A 24:501–504

    Article  Google Scholar 

  42. Tian YX, Guo JT, Zhou LZ, Cheng GM, Ye HQ (2008b) Microstructure and room temperature fracture toughness of cast Nbss/silicides composites alloyed with Hf. Mater Lett 62:2657–2660

    Article  CAS  Google Scholar 

  43. Sankar M, Phanikumar G, Vajinder Singh VV, Prasad S (2018) Effect of Zr additions on microstructure evolution and phase formation of Nb−Si based ultrahigh temperature alloys. Intermetallic 101:123–132

    Article  CAS  Google Scholar 

  44. Kommineni G, Golla BR, Alam Z, Sarkar R, Satya Prasad VV (2021a) Structure-property correlation and deformation mechanisms in ductile phase (Nbss) toughened cast Nb-Si alloys. J Alloys Compounds 873:159832

    Article  CAS  Google Scholar 

  45. Kommineni G, Alam Z, Sudharshan Phani P, Sarkar R, Satya Prasad VV, Golla BR (2021b) Influence of Ti and Zr alloying elements on microstructure and micromechanical properties of near eutectic Nb-18.7Si alloy. Mater Charact 171:110723

    Article  CAS  Google Scholar 

  46. Subramanian PR, Mendiratta MG, Dimiduk DM (1994) Microstructure and mechanical behavior of Nb-Ti base beta+silicide alloys. Mater Resour Symp Proc 322:491–502

    Article  CAS  Google Scholar 

  47. Sankar M, Phanikumar G, Satya Prasad VV (2019) Effect of Zr addition on the mechanical properties of Nb-Si based alloys. Mater Sci Eng A 754:224–231

    Article  CAS  Google Scholar 

  48. Qiao Y, Guo X, Zeng Y (2017) Study of the effects of Zr addition on the microstructure and properties of Nb-Ti-Si based ultrahigh temperature alloys. Intermetallics 88:19–27

    Article  CAS  Google Scholar 

  49. Kashyap S, Tiwary CS, Chattopadhyay K (2013) Microstructure and mechanical properties of oxidation resistant suction cast Nb–Si–Al alloy. Mater Sci Eng, A 559:74–85

    Article  CAS  Google Scholar 

  50. Li Y, Ma C, Zhang H, Miura S (2011) Mechanical properties of directionally solidified Nb–Mo–Si-based alloys with aligned Nbss/Nb5Si3 lamellar structure. Mater Sci Eng, A 528:5772–5777

    Article  CAS  Google Scholar 

  51. Zhou JR, Sha JB (2013) Microstructural evolution and mechanical properties of an Nb-16Si in-situ composite with Fe additions prepared by arc-melting. Intermetallics 34:1–9

    Article  Google Scholar 

  52. Zhang SM, Zhou JR, Sha JB (2015) Effect of Fe additions on microstructure and mechanical properties of a multi-component Nb-16Si-22Ti-2Hf-2Al-2Cr alloy at room and high temperatures. Intermetallics 57:146–155

    Article  CAS  Google Scholar 

  53. Kashyap S, Tiwary CS, Chattopadhyay K (2011) Effect of gallium on the microstructure and mechanical properties of Nb-Si eutectic alloy. Intermetallics 19:1943–1952

    Article  CAS  Google Scholar 

  54. Gu Y, Jia L, Kong B, Zhang H, Zhang H (2017) Simultaneous improvement in fracture toughness and oxidation resistance of Nb-Si based alloys by vanadium addition. Mater Sci Eng, A 701:149–157

    Article  Google Scholar 

  55. Kang Y, Qu S, Song J, Huang Q, Han Y (2012) Microstructure and mechanical properties of Nb–Ti–Si–Al–Hf–xCr–yV multi-element in situ composite. Mater Sci Eng, A 534:323–328

    Article  CAS  Google Scholar 

  56. Chattopadhyay K, Balachandran G, Mitra R, Ray KK (2006) Effect of Mo on Microstructure and Mechanical behaviour of as cast Nbss-Nb5Si3 in situ composites. Intermetallics 14:1452–1460

    Article  CAS  Google Scholar 

  57. Grammenos I, Tsakiropoulos P (2011) Study of the role of Hf, Mo and W additions in the microstructure of Nb-20Si silicide based alloys. Intermetallics 19:1612–1621

    Article  CAS  Google Scholar 

  58. Grammenos I, Tsakiropoulos P (2010a) Study of the role of Al, Cr and Ti additions in the microstructure of Nb–18Si–5Hf base alloys. Intermetallics 18:242–253

    Article  CAS  Google Scholar 

  59. Grammenos I, Tsakiropoulos P (2010b) Study of the role of Mo and Ta additions in the microstructure of Nb-18Si-5Hf silicide based alloy. Intermetallics 18:1524–1530

    Article  CAS  Google Scholar 

  60. Zhao J, Utton C, Tsakiropoulos P (2020) On the microstructure and properties of Nb-12Ti-18Si-6Ta-2.5W–1Hf (at.%) silicide-based alloys with Ge and Sn additions. Materials 13:1778

    Article  CAS  Google Scholar 

  61. Bewlay BP, Yang Y, Casey RL, Jackson MR, Chang YA (2009) Experimental study of the liquid–solid phase equilibria at the metal-rich region of the Nb–Cr–Si system. Intermetallics 17:120–127

    Article  CAS  Google Scholar 

  62. Geng J, Tsakiropoulos P, Shao G (2007a) A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites. Intermetallics 15(1):69–76

    Article  CAS  Google Scholar 

  63. Geng J, Tsakiropoulos P, Shao G (2007b) A thermo-gravimetric and microstructural study of the oxidation of Nbss/Nb5Si3 based in situ composites with Sn addition. Intermetallics 15(3):270–281

    Article  CAS  Google Scholar 

  64. Li Z, Tsakiropoulos P (2019) On the microstructures and hardness of the Nb-24Ti-18Si-5Al-5Cr-5Ge and Nb-24Ti-18Si-5Al-5Cr-5Ge-5Hf (at.%) silicide based alloys. Materials 12:2655

    Article  CAS  Google Scholar 

  65. Vellios N, Tsakiropoulos P (2007) The role of Sn and Ti additions in the microstructure of Nb-18Si base alloys. Intermetallics 15:1518–1528

    Article  CAS  Google Scholar 

  66. Vellios N, Tsakiropoulos P (2007) The role of Fe and Ti additions in the microstructure of Nb-18Si-5Cr base alloys. Intermetallics 15:1529–1537

    Article  CAS  Google Scholar 

  67. Xu Z, Utton C, Tsakiropoulos P (2020) A Study of the Effect of 5 at .% Sn on the micro-structure and isothermal oxidation at 800 and 1200˚C of Nb-24Ti-18Si based alloys with Al and/or Cr additions. Materials 13:245

    Article  Google Scholar 

  68. Vellios N, Tsakiropoulos P (2010) The role of Fe and Sn additions in the microstructure of Nb-18Si-5Sn base alloys. Intermetallics 18:1729–1736

    Article  CAS  Google Scholar 

  69. Zifu L, Tsakiropoulos P (2013) The microstructures of Nb–18Si–5Ge–5Al and Nb–24Ti–18Si–5Ge–5Al in situ composites. J Alloy Compd 550:553–560

    Article  Google Scholar 

  70. Zifu L, Tsakiropoulos P (2011) Study of the effect of Ti and Ge in the microstructure of Nb-24Ti-18Si-5Ge in situ composite. Intermetallics 19:1291–1297

    Article  Google Scholar 

  71. Bewlay BP, Lipsitt HA, Reeder WJ, Jackson MR, Sutliff JA (1993) Processing and fabrication of advanced materials for high temperature applications III. In: Ravi VA, Srivatsan TS, Moore JJ (eds) (TMS Publications, Warrendale, PA) 547–565

  72. Davidson DL, Chan KS, Anton DL (1996) The effects on fracture toughness of ductile-phase composition and morphology in Nb-Cr-Ti and Nb-Si insitu composites. Metall Mater Trans A 27:3007–3017

    Article  Google Scholar 

  73. Shi S, Zhu L, Zhang H, Sun Z (2016) Toughening of α-Nb5Si3 by Ti. J Alloy Compd 689:296–301

    Article  CAS  Google Scholar 

  74. Geethasree K, Satya Prasad VV, Golla BR, Alam Z (2019a) Cyclic oxidation behavior of Fe-Cr modified slurry silicide coated Nb-18.7Si alloyed with Ti and Zr. Corros Sci 148:293–306

    Article  CAS  Google Scholar 

  75. Chattopadhyay K, Sinha R, Mitra R, Ray KK (2007) Effect of Mo and Si on morphology and volume fraction of eutectic in Nb–Si–Mo alloys. Mater Sci Eng, A 456(1–2):358–363

    Article  Google Scholar 

  76. Zheng P, Sha JB, Liu DM, Gong SK, Xu HB (2008) Effect of Hf on high-temperature strength and room-temperature ductility of Nb–15W–0.5Si–2B alloy. Mater Sci Eng A 483–484:656–659

    Article  Google Scholar 

  77. Maji P, Mitra R, Ray KK (2017) Effect of Cr on the evolution of microstructures in as-cast ternary niobium-silicide-based composites. Intermetallics 85:34–47

    Article  CAS  Google Scholar 

  78. Tiwary CS, Kashyap S, Chattopadhyay K (2013) Effect of Mg addition on microstructural, mechanical and environmental properties of Nb-Si eutectic composite. Mater Sci Eng, A 560:200–207

    Article  CAS  Google Scholar 

  79. Ashby MF, Blunt FJ, Bannister M (1989) Flow characteristics of highly constrained metal wires. Acta Metallur 37(7):1847–1857

    Article  CAS  Google Scholar 

  80. Bannister M, Ashby MF (1991) The deformation and fracture of constrained metal sheets. Acta Metall Mater 39(11):2572–2582

  81. Rigney JD (1996) Fracture of laminated and in-situ niobium silicide-niobium composites. Online Proc Libr Arch 434:227–241

    Article  CAS  Google Scholar 

  82. Mediratta MG, Dimiduk DM (1991) Phase relations and transformation kinetics in the high Nb region of the Nb-Si system. Scr Metall Mater 25:237–242

    Article  Google Scholar 

  83. Chan KS, Davidson DL (2001) Delineating brittle-phase embrittlement and ductile-phase toughening in Nb-based in-situ composites. Metall Mater Trans A 32:2717–2727

    Article  Google Scholar 

  84. Kofstad P (1988) High temperature corrosion. Elsevier Applied Science Publishers Ltd

  85. Kubaschewski O, Hopkins BE (1960) Oxidation mechanisms of niobium, tantalum, molybdenum and tungsten. J Less Common Metals 2:172–180

    Article  CAS  Google Scholar 

  86. Clenny JT, Rosa CJ (1980) Oxidation kinetics of niobium in the temperature range of 873–1083 K. Metall Trans A 11:1383–1388

    Article  Google Scholar 

  87. Pint BA, Di Stefano JR, Wright IG (2006) Oxidation resistance: One barrier to moving beyond Ni-base superalloys. Mater Sci Eng, A 415:255–263

    Article  Google Scholar 

  88. Mathieu S, Knittel S, Berthod P, Mathieu S, Vilasi M (2012) On the oxidation mechanism of niobium-base in situ composites. Corros Sci 60:181–192

    Article  CAS  Google Scholar 

  89. Chattopadhyay K, Mitra R, Ray KK (2008) Nonisothermal and isothermal oxidation behavior of Nb-Si-Mo alloys. Metall Mater Trans A 39:577–592

    Article  Google Scholar 

  90. Chan KS (2005) Alloying effects on the fracture toughness of Nb-based silicides and laves phases. Mater Sci Eng, A 409:257–269

    Article  Google Scholar 

  91. Knittel S, Mathieu S, Portebois L, Vilasi M (2014) Effect of tin addition on Nb-Si-based in situ composites Part II: Oxidation behavior. Intermetallics 47:43–52

    Article  CAS  Google Scholar 

  92. Chan KS (2004) Cyclic-oxidation resistance of niobium-base in situ composites: Modelling and experimentation. Oxid Met 61(3/4):165–194

    Article  CAS  Google Scholar 

  93. Su L, Jia L, Jiang K, Zhang H (2017) The oxidation behaviour of high Cr and Al containing Nb-Si-Ti-Hf-Al-Cr alloys at 1200 and 1250°C. Int J Refract Metal Hard Mater 69:131–137

    Article  CAS  Google Scholar 

  94. Esparza N, Rangel V, Gutierrez A, Arellano B, Varma SK (2016) A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system. Mater High Temp 33(2):105–114

    Article  CAS  Google Scholar 

  95. Zhang S, Guo XP (2015a) Effects of Cr and Hf additions on the microstructure and properties of Nb silicide based ultrahigh temperature alloys. Mater Sci Eng, A 638:121–131

    Article  CAS  Google Scholar 

  96. Zhang S, Guo X (2015b) Microstructural characteristics of Nb-Si based ultrahigh temperature alloys with B and Hf additions. Intermetallics 64:51–58

    Article  CAS  Google Scholar 

  97. Liu SY, Liu S, Li DJ, Wang S, Guo J, Shen Y (2015) Ab initio atomistic study on the oxidation mechanism of binary and ternary surfaces. J Chem Phys 142:064705

    Article  Google Scholar 

  98. Knittel S, Mathieu S, Vilasi M (2013a) Nb4Fe4Si7 coatings to protect niobium and niobium silicide composites against high temperature oxidation. Surf Coat Technol 235:144–154

    Article  CAS  Google Scholar 

  99. Knittel S, Mathieu S, Portebois L, Drawin S, Vilasi M (2013b) Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation. Surf Coat Technol 235:401–406

    Article  CAS  Google Scholar 

  100. Wand W, Yuan BF, Zhou CG (2014) Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites. Corros Sci 80:164–168

    Article  Google Scholar 

  101. Wang W, Zhou C (2016) Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy. Corros Sci 110:114–122

    Article  CAS  Google Scholar 

  102. Alam MZ, Sambasiva Rao A, Das DK (2010) Microstructure and high temperature oxidation performance of silicide coating on Nb-based alloy C-103. Oxidation Metals 73:513–530

    Article  CAS  Google Scholar 

  103. Novak MD, Levi CG (2007) Oxidation and volatilization of silicide coatings for refractory niobium alloys. Proc IMECE 2007–42908

  104. Priceman S, Sama L (1968) Protective coatings for refractory metals formed by the fusion of silicon alloy slurries. Electrochem Technol 6:315–326

    CAS  Google Scholar 

  105. Qiao Y, Guo X (2010) Formation of Cr-modified silicide coatings on a Ti–Nb–Si based ultrahigh-temperature alloy by pack cementation process. Appl Surf Sci 256:7462–7471

    Article  CAS  Google Scholar 

  106. Geethasree K, Alam MZ, Brahma Raju G, Satya Prasad VV (2019b) Microstrucutre and mechanical properties of unoate Nb-18.7Si and Nb-18.7Si-5Ti alloys and their improved oxidation resistance after application of silicide coating. Mater Today: Proc 15:36–43

    CAS  Google Scholar 

  107. Zhao J-C, Westbrook JH (2003) Guest Editors. Ultrahigh- temperature materials for jet engines. MRS Bull 622–630

  108. Frankas D (1998) Atomistic simulations of fracture in the B2 phase of the Nb–Ti–Al system. Mater Sci Eng, A 249:249–258

    Article  Google Scholar 

  109. Zelenitsas K, Sakiropoulos T (2005) Study of the role of Al and Cr additions in the microstructure of Nb–Ti–Si in situ composites. Intermetallics 13(10):1079–1095

    Article  CAS  Google Scholar 

  110. Zhao LX, Guo XP, Jiang YY (2007) Preparation and structural formation of oxidation-resistant silicide coatings on Nb-based alloy by pack cementation technique. J Nonferrous Metals 17:596–601

    CAS  Google Scholar 

  111. Alam MZ, Sarin S, Kumawat MK, Das DK (2016) Microstructure and oxidation behaviour of Fe–Cr–silicide coating on a niobium alloy. Mater Sci Technol 32(18):1826–1837

Download references

Acknowledgements

The authors are thankful to Defence Research and Development Organization (DMRL) for giving permission to carry out this research work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Geethasree Kommineni] and [Brahma Raju Golla]. The first draft of the manuscript was written by [Geethasree Kommineni] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Geethasree Kommineni or Brahma Raju Golla.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kommineni, G., Golla, B.R. & Prasad V. V., S. An Overview on Effect of Alloying Elements on the Phase Formation, Mechanical and Oxidation Properties of Nb-Nb Silicide In Situ Composites. Silicon 15, 651–681 (2023). https://doi.org/10.1007/s12633-022-02051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02051-5

Keywords

Navigation