Skip to main content

Advertisement

Log in

Synthesis of a New Zn2+/Fe3+ Octa(aminopropyl)silsesquioxane Complex and Its Voltammetric Behavior Towards N-acetylcysteine

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A zinc-modified octa(aminopropyl)silsesquioxane and the cyan compound Na2[Fe(CN)5NO] were prepared to create a hybrid electroactive material (ACZnN) characterized employing the spectroscopic techniques Raman spectroscopy, Diffuse Reflectance (DR), X-Ray diffraction (XRD), Scanning Electronic Microscopy (SEM), thermogravimetric analysis (TGA) and voltammetric measurements. The cyclic voltammetry technique indicated the solid ACZnN on the electrode surface as presenting two redox processes, with EIθ' = 0.21 V and EIIθ' = 0.51 V (vs Ag/AgCl(sat)) attributed to the redox pair Fe2+(CN)5NO/ Fe3+(CN)5NO in the absence and presence of Zn2+, respectively, as well as adequate stability, reliability and efficiency for practical applications. The ACZnN-modified graphite paste electrode exhibited a sensitive and catalytic oxidation response towards N-acetylcysteine and was successfully employed 1in the catalytic electro-oxidation of N-acetylcysteine employing differential pulse voltammetry techniques. The lowest limit of detection and best amperometric sensitivity obtained by differential pulse voltammetry were 0.657 µmol L−1 and 500 mA/mol L−1, respectively, from 1.0 × 10–6 to 1.0 × 10–5 M. Further analyses applying this method also demonstrated the compound’s efficiency in detecting N-acetylcysteine in synthetic urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the published article.

Code availability

Not applicable.

References

  1. Voronkov MG, Lavrent'yev VL (1982) Polyhedraloligosilsesquioxanes and their homo derivates. Top Curr Chem 102:199–236. https://doi.org/10.1007/3-540-11345-2_12

  2. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430. https://doi.org/10.1021/cr00037a012

    Article  CAS  Google Scholar 

  3. Provatas A, Matisons JG (1997) Silsesquioxanes: synthesis and applications. Trends Polymer Sci 10:327–332

    Google Scholar 

  4. Shi H, Yang J, You M, Li Z, He C (2020) Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: molecular design, material advantages, and emerging applications. Acs Materials Letters 2:296–316. https://doi.org/10.1021/acsmaterialslett.9b00491

    Article  CAS  Google Scholar 

  5. Li G, Wang L, Ni H, Pittman CU Jr (2001) Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review. J Inorg Organomet Polym 11:123–154. https://doi.org/10.1023/A:1015287910502

    Article  CAS  Google Scholar 

  6. Lichtenhan J, POSS-Based Polymers Lichtenhan JD, Pielichowski K, Blanco I (2019) Polymers 11(10), 1727. https://doi.org/10.3390/polym11101727

  7. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173. https://doi.org/10.1021/cr900201r

    Article  CAS  Google Scholar 

  8. Blanco I, Abate L, Botino FA (2017) Mono substituted octaphenyl POSSs: The effects of substituents on thermal properties and solubility. Thermochim Acta 655:117–123. https://doi.org/10.1016/j.tca.2017.06.019

    Article  CAS  Google Scholar 

  9. Kataoka S, Banerjee S, Kawai A, Kamimura Y, Choi JC, Kodaira KS, Endo A (2015) Layered Hybrid Perovskites with Micropores Created by Alkylammonium Functional Silsesquioxane Interlayers. J Am Chem Soc 137:4158–4163. https://doi.org/10.1021/jacs.5b00290

    Article  CAS  Google Scholar 

  10. Jelen P, Bik M, Nocun M, Gaweda M, Dlugon E, Sitarz M (2016) Free carbon phase in SiOC glasses derived from ladder-like silsesquioxanes. J Mol Struct 1126:172–176. https://doi.org/10.1016/j.molstruc.2016.03.096

    Article  CAS  Google Scholar 

  11. Dule M, Biswas M, Paira TK, Mandal TK (2015) Hierarchical nanostructures of tunable shapes through self-aggregation of POSS end-functional polymer and poly(ionic liquid) hybrids. Polym 77:32–41. https://doi.org/10.1016/j.polymer.2015.09.020

    Article  CAS  Google Scholar 

  12. Yang FF, Li ZX, Xu YJ, Huang YP, Liu ZS (2018) Enhanced molecular recognition for imprinted monolithic column containing polyhedral oligomeric silsesquioxanes by dendritic effect of mesoporous molecular sieve scaffolds. Anal Bioanal Chem 410:5183–5193. https://doi.org/10.1007/s00216-018-1166-8

    Article  CAS  Google Scholar 

  13. Li S, Wang ZY, Gao GG, Li B, Luo P, Kong YJ, Liu H, Zang SQ (2018) Smart Transformation of a Polyhedral Oligomeric Silsesquioxane Shell Controlled by Thiolate Silver(I) Nanocluster Core in Cluster@Clusters Dendrimers. Angew Chem Int 57:12775–12779. https://doi.org/10.1002/anie.201807548

    Article  CAS  Google Scholar 

  14. Yuan G, Wang X, Wu D, Hammouda B (2016) Structural analysis of dendrimers based on polyhedral oligomeric silsesquioxane and their assemblies in solution by small-angle neutron scattering: Fits to a modified two correlation lengths model. Polym 100:119–125. https://doi.org/10.1016/j.polymer.2016.06.062

    Article  CAS  Google Scholar 

  15. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. J Nanomater 2:445–475. https://doi.org/10.3390/nano2040445

    Article  CAS  Google Scholar 

  16. Rao YQ, Frenton J, Jenkins R, Evans J (2018) Structure and its thickness dependence of thin films of phenyl and methyl silsesquioxane polymers. J Non-Cryst Solids 502:128–135. https://doi.org/10.1016/j.jnoncrysol.2018.07.066

    Article  CAS  Google Scholar 

  17. Zhang LP, Tang SH, Mo CE, Wang C, Huang YP (2018) Synergistic effect of liquid Crystal and polyhedral oligomeric silsesquioxane to prepare molecularly imprinted Polymer for paclitaxel delivery. Eur Polym J 98:226–236. https://doi.org/10.1016/j.eurpolymj.2017.11.021

    Article  CAS  Google Scholar 

  18. Zapp E, Da Silva PS, Westphal E, Gallardo H, Spinelli A, Vieira IC (2014) Troponin T immunosensor based on a liquid crystal and silsesquioxane-supported gold nanoparticles. Bioconjugate Chem 25:1638–1643. https://doi.org/10.1021/bc500341a

    Article  CAS  Google Scholar 

  19. Liu F, Zhang Y, Xu L, Zhang W (2015) Morphology-Controlled Self-Assembly of an Organic/Inorganic Hybrid Porphyrin Derivative Containing Polyhedral Oligomeric Silsesquioxane (POSS). Chem Eur J 21:5540–5547. https://doi.org/10.1002/chem.201405334

    Article  CAS  Google Scholar 

  20. Li X, Hao J, Jiang Q, Mu J, Jiang Z (2015) Phosphorus-containing polyhedral oligomeric silsesquioxane/polyimideshybrid materials with low dielectric constant and low coefficients of thermal expansion. J Appl Polym Sci 132:42611. https://doi.org/10.1002/app.42611

    Article  CAS  Google Scholar 

  21. Oban R, Matsukawa K, Matsumoto A (2018) Heat Resistant, and Transparent Organic-Inorganic Hybrid Materials Composed of N-Allylmaleimide Copolymer and Random-Type SH-Modified Silsesquioxane. J Polym Sci Part A: Polym Chem 56; 2294–2302. https://doi.org/10.1002/pola.29202

  22. Wang J, Sun J, Zhou J, Jin K, Fang Q (2017) Fluorinated and Thermo-Cross-Linked Polyhedral Oligomeric Silsesquioxanes: New Organic-Inorganic Hybrid Materials for High-Performance Dielectric Application. ACS Appl Mater Interfaces 9:12782–12790. https://doi.org/10.1021/acsami.7b01415

    Article  CAS  Google Scholar 

  23. Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA (2011) Low-k Periodic Mesoporous Organosilica with Air Walls: POSS-PMO. J Am Chem Soc 133:18082–18085. https://doi.org/10.1021/ja2080136

    Article  CAS  Google Scholar 

  24. Handke M, Kowalewska A (2011) Siloxane, and silsesquioxane molecules—Precursors for silicate materials. Spectrochim Acta, Part A 79:749–757. https://doi.org/10.1016/j.saa.2010.08.049

    Article  CAS  Google Scholar 

  25. Guo Y, Mylonakis A, Zhang Z, Lelkes PI, Levon K (2007) Oligoaniline-contained electroactive silsesquioxane precursor for synthesizing novel siliceous materials. Macromol 40:2721–2729. https://doi.org/10.1021/ma0622985

    Article  CAS  Google Scholar 

  26. Magossi MS, Maraldi VA, Dias Filho NL, Do Carmo DR (2018) Silica Gel Functionalized with 4-Amino-5-(4pyridyl)-4H-1,2,4-triazole-3-thiol and their Use as a Copper Sorbent and Electromediator for Voltammetric Detection of Ascorbic Acid. Electroanal 30:1–9. https://doi.org/10.1002/elan.201800361

    Article  CAS  Google Scholar 

  27. Da Silveira TFS, Fernandes DS, Barbosa PFP, Do Carmo DR (2017) Preparation and use of a Grafted Silica with Imidazole Groups for Cadmium Sorption and Subsequent Voltammetric Detection of Ascorbic Acid. Silicon 10:635–643. https://doi.org/10.1007/s12633-016-9506-9

    Article  CAS  Google Scholar 

  28. Vieira EG, Soares IV, Pires G, Ramos RAV, Do Carmo DR, Dias Filho NL (2015) Study on determination and removal of metallic ions from aqueous and alcoholic solutions using a new POSS adsorbent. Chem Eng J 264:77–88. https://doi.org/10.1016/j.cej.2014.11.050

    Article  CAS  Google Scholar 

  29. Quadrelli EA, Basset JM (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254:707–728. https://doi.org/10.1016/j.ccr.2009.09.031

    Article  CAS  Google Scholar 

  30. Vieira EG, Silva RO, Do Carmo DR, Furlani Junior E, Dias Filho NL (2017) Synthesis and comparison of the activities of a catalyst supported on two silicate materials. Mater Chem Phys 191:197–205. https://doi.org/10.1016/j.matchemphys.2017.01.045

    Article  CAS  Google Scholar 

  31. Chojnowski J, Fortuniak W, Rosciszewski P, Werel W, Lukasiak J, Kamisz W, Halasa R (2006) Polysilsesquioxanes and oligosilsesquioxanes substituted by alkylammonium salts as antibacterial biocides. J Inorg Organomet Polymer Mater 16:219–230. https://doi.org/10.1007/s10904-006-9048-5

    Article  CAS  Google Scholar 

  32. Ro HW, Park ES, Soles DYCL, Yoon DY (2010) Structure−Property Relationships for Methylsilsesquioxanes. Chem Mater 22:1330–1339. https://doi.org/10.1021/cm901771y

    Article  CAS  Google Scholar 

  33. Da Silveira TFS, Silvestrini DR, Bicalho UO, Do Carmo DR (2013) Voltammetric Study of a Cubic Silsesquioxane Organically Modified with Imidazole and their Subsequent Reaction with Cadmium and Hexacyanoferrate (III). Int J Electrochem Sci 8:872–886

    Google Scholar 

  34. Do Carmo DR, Silvestrine DR, Barud HS, Dias Filho NL, Bicalho UO, Soares LA (2014) A Silsesquioxane Organically Modified with 4-Amino-5-(4-pyridyl)-4 H-1,2,4-triazole-3-thiol: Thermal Behavior and It’s Electrochemical Detection of Sulfhydryl Compounds. J Nanomat 2014:1–11. https://doi.org/10.1155/2014/695954

    Article  CAS  Google Scholar 

  35. Li K, Liu Y, Pu KY, Feng SS, Zhan R, Liu B (2011) Polyhedral Oligomeric Silsesquioxanes-Containing Conjugated Polymer Loaded PLGA Nanoparticles with Trastuzumab (Herceptin) Functionalization for HER2-Positive Cancer Cell Detection Adv. Funct Mater 21:287–294. https://doi.org/10.1002/adfm.201001435

    Article  CAS  Google Scholar 

  36. Ghanbari H, Cousins BG, Seifalian AM (2011) A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS) Macromol. Rapid Commun 32:1032–1046. https://doi.org/10.1002/marc.201100126

    Article  CAS  Google Scholar 

  37. Zhou Z, Lu ZR (2014) Dendritic Nanoglobules with Polyhedral Oligomeric Silsesquioxane Core and Their Biomedical Applications. Nanomedicine 9:2387–2401. https://doi.org/10.2217/nnm.14.133

    Article  CAS  Google Scholar 

  38. Feher FJ, Wyndham KD, Soulivong D, Nguyen F (1999) Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12). J Chem Soc, Dalton Trans, 1491-1497. https://doi.org/10.1039/a807302c

  39. Foroughi MM, Beitollahi H, Tajik S, Akbari A, Hosseinzadeh R (2014) Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int J Electrochem Sci 9:8407–8421

    Google Scholar 

  40. Da Silva IS, Araújo MFA, Ferreira HA, Varela Junior JJG, Tanaka SMCN, Tanaka AA, Angnes L (2011) Quantification of Nacetylcysteinein pharmaceuticals using cobalto phthalocyanine modified grafite electrodes. Talanta 83:1701–1706. https://doi.org/10.1016/j.talanta.2010.11.070

    Article  CAS  Google Scholar 

  41. Wang X, Chi D, Song D, Su G, Li L, Shao L (2012) Quantification of glutathione in plasma samples by HPLC using 4-fluoro-7-nitrobenzofurazan as a fluorescent labeling reagent. J Chromatogr Sci 50:119–122. https://doi.org/10.1093/chromsci/bmr039

    Article  CAS  Google Scholar 

  42. Zheng X, Duan C, Shen J, Duan X (2015) Determination of reduced glutathione by spectrophotometry coupled with anti-interference compensation. Anal Methods 7:5006–5011. https://doi.org/10.1039/c5ay00825e

    Article  CAS  Google Scholar 

  43. Tao Y, Zhang X, Wang J, Wang X, Yang N (2012) Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence. J Electroanal Chem 674:65–70. https://doi.org/10.1016/j.jelechem.2012.03.009

    Article  CAS  Google Scholar 

  44. Du JX, Li YH, Lu JR (2001) Investigation on the chemiluminescence reaction of luminol–H2O2–S2−/R–SH system. Anal Chim Acta 448:79–83. https://doi.org/10.1016/S0003-2670(01)01242-9

    Article  CAS  Google Scholar 

  45. Ogwu V, Cohen G (1998) A simple colorimetric method for the simultaneous determination of N-acetylcysteine and cysteine. Free Radical Biol Med 25:362–364. https://doi.org/10.1016/s0891-5849(98)00024-0

    Article  CAS  Google Scholar 

  46. AL-Ghannam S, EL-Brashy A, AL-Farhan B (2022) Fluorimetric: determination of some thiol compounds in their dosage forms. II Farmao 57; 625-629. https://doi.org/10.1016/S0014-827X(02)01223-5

  47. De Sa AC, Paim LL, Bicalho UO, Do Carmo DR (2011) Determination of N-acetylcysteine by cyclic voltammetry using modified carbon paste electrode with copper nitroprusside adsorbed on the 3–aminopropylsilica. Int J Electrochem Sci (6):3754–3767

  48. Xiao C, Chen J, Liu B, Chu X, Wu L, Yao S (2011) Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide– carbon nanocompositew. Phys Chem Chem Phys 13:1568–1574. https://doi.org/10.1039/c0cp00980f

    Article  CAS  Google Scholar 

  49. Liu X, Lv H, Sun Q, Zhong Y, Zhao J, Fu J, Lin M, Wang J (2012) Differential pulse voltammetric determination of L-cysteine after cyclic voltammetry in presence of catechol with glassy carbon electrode. Anal Lett 45:2246–2256. https://doi.org/10.1080/00032719.2012.686133

    Article  CAS  Google Scholar 

  50. Do Carmo DR, da Silva RM, Stradiotto NR (2003) Electrocatalytic and Voltammetric Determination of Sulfhydryl Compounds Through Iron Nitroprusside Modified Graphite Paste Electrode. J Braz Chem Soc 14:616–620

    Article  CAS  Google Scholar 

  51. Ahmad M, Pan C, Zhu J (2010) Electrochemical determination of L-cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J Mater Chem 20:7169–7174. https://doi.org/10.1039/C0JM01055C

    Article  CAS  Google Scholar 

  52. Song-Jiang M, Sheng-Lian L, Hai-Hui Z, Ya-Fei K, Xiao-Hui N (2008) Electrocatalytic oxidation behavior of L-cysteine at Pt microparticles modified nanofibrous polyaniline film electrode. J Cent South Univ Technol 15:170–175. https://doi.org/10.1007/s11771-008-0033-8

    Article  CAS  Google Scholar 

  53. Xiao C, Chen J, Liu B, Chu X, Wu L, Yao S (2011) Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide–carbon nanocompositew. Phys Chem Chem Phys 13:1568–1574. https://doi.org/10.1039/C0CP00980F

    Article  CAS  Google Scholar 

  54. Karimi-Maleh H, Keyvanfard M, Alizad K, Khosravi V, Asnaashariisfahani M (2012) Electrocatalytic determination of glutathione using multiwall carbon nanotubes paste electrode as a sensor and isoprenaline as a mediator. Int J Electrochem Sci 7:6816–6830

    CAS  Google Scholar 

  55. Safavi A, Maleki N, Farjami E, Mahyari FG (2009) Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbono ionic liquid electrode. Analytical Chemistr 81:7538–7543. https://doi.org/10.1021/ac900501j

    Article  CAS  Google Scholar 

  56. Magossi MS, Magossi MS, Dias Filho NL, Do Carmo DR (2021) Isoniazid-sensing Behavior of a Hybrid Silsesquioxane and Cobalt Pentacyanonitrosylferrate-based Nanocomposite. Electroanalysis 33:1–10. https://doi.org/10.1002/elan.202100119

    Article  CAS  Google Scholar 

  57. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–206. https://doi.org/10.1046/j.1472-765x.1997.00378.x

    Article  CAS  Google Scholar 

  58. Osiry H, Cano A, Reguera L, Lemus-Santana AA, Reguera E (2015) Mercury (I) nitroprusside: a 2d structure supported on homometallic interactions. J Solid State Chem 221:79–84. https://doi.org/10.1016/j.jssc.2014.09.021

    Article  CAS  Google Scholar 

  59. Rodríguez-Hernández J, Reguera L, Lemus-Santana AA, Reguera E (2015) Silver nitroprusside: atypical coordination within the metal nitroprussides series. Inorg Chim Acta 428:51–56. https://doi.org/10.1016/j.ica.2014.12.023

    Article  CAS  Google Scholar 

  60. Benavente A, De Morán JA, Piro OE, Castellano EE, Aymonino PJ (1997) Crystal and anion structure, TGA, DTA, and infrared and Raman spectra of managanese(II) nitroprusside dihydrate, Mn [Fe(CN)5NO]·2H2O. J Chem Crystallogr 27:343–352. https://doi.org/10.1007/bf02576566

    Article  CAS  Google Scholar 

  61. Reguera E, Marín E, Calderón A, Rodríguez-Hernández J (2007) Photo-induced charge transfer in Prussian blue analogues as detected by photoacoustic spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 68:191–197. https://doi.org/10.1016/j.saa.2006.11.013

    Article  CAS  Google Scholar 

  62. Do Carmo DR, Fernandes DS, Cumba LR, Magossi MS, Dos Santos VS (2016) Solvent mixture effect in the zinc hexacyanoferrate (III) nanoparticles: synthesis, characterization and voltammetric application. Mater Res Bull 84:370–377. https://doi.org/10.1016/j.materresbull.2016.08.034

    Article  CAS  Google Scholar 

  63. Do Carmo DR, Guinesi LS, Dias Filho NL, Stradiotto NR (2004) Thermolysis of octa (hydridodimethylsiloxyl) octasilsesquioxane in pyridine media and subsequent toluidine blue O adsorption. Appl Surf Sci 235:449–459. https://doi.org/10.1016/j.apsusc.2004.02.061

    Article  CAS  Google Scholar 

  64. Do Carmo DR, Paim LL, Dias Filho NL, Stradiotto NR (2007) Preparation, characterization and application of a nanostructured composite: octakis(cyanopropyldimethylsiloxy)octasilsesquioxane. Appl Surf Sci 253:3683–3689. https://doi.org/10.1016/j.apsusc.2006.07.080

    Article  CAS  Google Scholar 

  65. Pournaghi-Azar MH, Nahalparvari H (2005) Preparation and characterization of electrochemical and electrocatalytic behavior of a zinc pentacyanonitrosylferrate film-modified glassy carbon electrode. J Electroanal Chem 583:307–317. https://doi.org/10.1016/j.jelechem.2005.06.016

    Article  CAS  Google Scholar 

  66. Magossi MS, Fernandes DS, Do Carmo DR (2019) Synthesis of a novel hybrid nanocomposite based on copper pentacyanonitrosylferrate and octa(aminopropyl)silsesquioxane and its behavior on l-cysteine electrooxidation. Solid State Sci 95:105931. https://doi.org/10.1016/j.solidstatesciences.2019.105931

    Article  CAS  Google Scholar 

  67. Lovrić M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175. https://doi.org/10.1007/s100080050144

    Article  Google Scholar 

  68. Lovrić M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J SolidState Electrochem 1:108–113. https://doi.org/10.1007/s100080050030

    Article  Google Scholar 

  69. Jayasri D, Narayanan SS (2006) Electrocatalytic oxidation and amperometric determination of BHA at graphite–wax composite electrode with silver hexacyanoferrate as electrocatalyst. Sensors And Actuators B: Chemical 119:135–142. https://doi.org/10.1016/j.snb.2005.11.064

    Article  CAS  Google Scholar 

  70. Engel D, Grabner EW (1985) Copper Hexacyanoferrate-Modified Glassy Carbon: a novel type of potassium-selective electrode. Ber Bunsenges Phys Chem 89:982–986. https://doi.org/10.1002/bbpc.19850890911

    Article  CAS  Google Scholar 

  71. Baldwin RP, Ravichandran K, Johnson RK (1984) A cyclic voltammetry experiment for the instrumental analysis laboratory. J Chem Educ 61:820–823. https://doi.org/10.1021/ed061p820

    Article  CAS  Google Scholar 

  72. Bard AJ, Faulkner LR (2001) Electrochemical Methods Fundamentals and Applications, 2ª. John Wiley & Sons, INC, New York

    Google Scholar 

  73. Zhou M, Ding J, Guo LP, Shang QK (2007) Electrochemical Behavior of l-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode. Anal Chem 79:5328–5335. https://doi.org/10.1021/ac0703707

    Article  CAS  Google Scholar 

  74. Ralph TR, Hitchman ML, Millington JP, Walsh FC (1994) The electrochemistry of l-cystine and l-cysteine. J Electroanal Chem 375:1–15. https://doi.org/10.1016/0022-0728(94)03407-9

    Article  CAS  Google Scholar 

  75. Do Carmo DR, Silva RM, Stradiotto NR (2005) Electrochemical Behaviour of Copper Nitroprusside Generated in situ Onto the Graphite Paste Electrode Surface, and its Application in the Determination of N-Acethylcysteine. Portugaliae Electrochimica Acta. 23:457–470. https://doi.org/10.4152/pea.200504457

    Article  Google Scholar 

  76. Da Silva IS, Araújo MFA, Ferreira HA, Varela JJG, Tanaka SMCN, Tanaka AA, Angnes L (2011) Quantification of N-acetylcysteine in pharmaceuticals using cobalt phthalocyanine modified graphite electrodes. Talanta 83:1701–1706. https://doi.org/10.1016/j.talanta.2010.11.070

    Article  CAS  Google Scholar 

  77. Song Y, He Z, Zhu H, Hou H, Wang L (2011) Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode: application to some amino acids detection. Electrochim Acta 58:757–763. https://doi.org/10.1016/j.electacta.2011.10.033

    Article  CAS  Google Scholar 

  78. Dos Santos VS, Maraldi VA, Bonfim KS, Souza TR, Nakamura APR, Magossi MS, Fernandes DS, Do Carmo DR (2017) Voltammetric Behavior of Zinc Hexacyanoferrate (III) Nanoparticles and Their Application in the Detection of N-Acetylcysteine. Int J Electrochem Sci 12:7142–7153. https://doi.org/10.20964/2017.08.06

    Article  CAS  Google Scholar 

  79. Do Carmo DR, Silvestrini DR, Barud HS, Dias Filho NL, Bicalho UO, Soares LA (2014) A Silsesquioxane Organically Modified with 4-Amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol: thermal behavior and its electrochemical detection of sulfhydryl compounds. J Nanomater 2014:1–11. https://doi.org/10.1155/2014/695954

    Article  CAS  Google Scholar 

  80. Pipi ARF, Do Carmo DR (2011) Voltammetric studies of titanium (IV) phosphate modified with copper hexacyanoferrate and electroanalytical determination of N-acetylcysteine. J Appl Electrochem 41:787–793. https://doi.org/10.1007/s10800-011-0296-x

    Article  CAS  Google Scholar 

  81. Zhang J, Chang Y, Dong C (2015) Electrocatalytic oxidation and sensitive determination of N-acetyl-L-cysteine at cyclodextrin-carbon nanotubes modified glassy carbon electrode. Surf Eng Appl Electrochem 51:111–117. https://doi.org/10.3103/s1068375515020155

    Article  Google Scholar 

  82. Raoof JB, Ojani R, Amiri-Aref M, Chekin F (2010) Catechol as an electrochemical indicator for voltammetric determination of N-acetyl-l-cysteine in aqueous media at the surface of carbon paste electrode. J Appl Electrochem 40:1357–1363. https://doi.org/10.1007/s10800-010-0093-y

    Article  CAS  Google Scholar 

  83. Suarez WT, Marcolino LH, Fatibello-Filho O (2006) Voltammetric determination of N-acetylcysteine using a carbon paste electrode modified with copper(II) hexacyanoferrate(III). Microchem J 82:163–167. https://doi.org/10.1016/j.microc.2006.01.007

    Article  CAS  Google Scholar 

  84. Tabeshnia M, Rashvandavei M, Amini R, Pashaee F (2010) Electrocatalytic oxidation of some amino acids on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J Electroanal Chem 647:181–186. https://doi.org/10.1016/j.jelechem.2010.06.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mariana de Souza Magossi would like to express her gratitude to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the granted scholarship granted/ and The authors would like to acknowledge the Instituto Federal Goiano and the CNPq for the financial support

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Process 2018/24576–2).

Author information

Authors and Affiliations

Authors

Contributions

Mariana de Souza Magossi: designed and performed the electrochemical experiments and verified the analytical methods; Murilo Santos Peixoto, Abner Santos Baroni Sales, Alexsandro dos Santos Felipe and Newton Luiz Dias Filho: performed several spectroscopic and analytical experiments. Devaney Ribeiro do Carmo: conceived of the idea, performed several spectroscopic experiments, and wrote the manuscript in consultation with the other authors. All authors participated in the discussion, contributing to the final manuscript.

Corresponding author

Correspondence to Devaney Ribeiro do Carmo.

Ethics declarations

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Carmo, D.R., Peixoto, M.S., dos Santos Felipe, A. et al. Synthesis of a New Zn2+/Fe3+ Octa(aminopropyl)silsesquioxane Complex and Its Voltammetric Behavior Towards N-acetylcysteine. Silicon 15, 683–697 (2023). https://doi.org/10.1007/s12633-022-02030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02030-w

Keywords

Navigation