Skip to main content

Advertisement

Log in

Catechol as an electrochemical indicator for voltammetric determination of N-acetyl-l-cysteine in aqueous media at the surface of carbon paste electrode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The utilization of catechol as an electrochemical indicator in the presence of N-Acetyl-l-cysteine (NAC) at a carbon paste electrode (CPE) has been investigated in aqueous media using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and double-step potential chronoamperometry methods. The results show that NAC participates in Michael type addition reaction with electrogenerated quinone from electrooxidation of catechol at CPE to form the corresponding thioquinone derivative. The reoxidation of the adduct leads to increase in the oxidative current which is proportional to the concentration of NAC. Therefore, in the optimum condition (pH = 6.00) by CV, the oxidation of NAC occurs at a potential about 400 mV versus Ag|AgCl|KClsat in the presence of catechol at the surface of CPE. The practical utility of the method showed that low detection limit and high sensitivity for voltammetric determination of NAC. The proposed method is useful for the routine analysis of NAC in pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Czap K (2000) Altern Med Rev 5:467

    Google Scholar 

  2. Feroci G, Fini A (2007) Inorg Chim Acta 360:1023

    Article  CAS  Google Scholar 

  3. Aruoma OI, Halliwell B, Hoey BM (1989) J Butler Free Radic Biol Med 6:593

    Article  CAS  Google Scholar 

  4. Liu M, Wikonkal M, Brash DE (1999) Carcinogenesis 20:1869

    Article  CAS  Google Scholar 

  5. Dekhuijzen PNR (2004) Eur Respir J 23:629

    Article  CAS  Google Scholar 

  6. Breitkreutz R, Pittack N, Nebe CT, Schuster D, Brust J, Beichert M, Hack V, Daniel V, Edler L, Droge W (2000) J Mol Med 78:55

    Article  CAS  Google Scholar 

  7. Valcour V, Shiramizu B (2004) Mitochondrion 4:119

    Article  CAS  Google Scholar 

  8. Zafarullah M, Li WQ, Silvester J, Ahmad M (2003) Cell Mol Life Sci 60:6

    Article  CAS  Google Scholar 

  9. Fu AL, Dong ZH, Sun MJ (2006) Brain Res 1109:201

    Article  CAS  Google Scholar 

  10. Concha-Herrera V, Torres-Lapasio JR, Garcia-Alvarez-Coque MC (2004) J Liq Chromatogr Relat Technol 27:1593

    CAS  Google Scholar 

  11. Tsikas D, Sandmann J, Ikic M, Fauler J, Stichtenoth DO, Frolich JC (1998) J Chromatogr B 708:55

    Article  CAS  Google Scholar 

  12. Tsai FY, Chen CJ, Chien CS (1995) J Chromatogr A 697:309

    Article  CAS  Google Scholar 

  13. Alvarez Coque MCG, Hernandez MJM, Camanas RM, Fernandez CM (1989) Analyst 114:975

    Article  Google Scholar 

  14. Raggi MA, Cavrini V, Dipietra AM (1982) J Pharm Sci 71:1384

    Article  CAS  Google Scholar 

  15. Suarez WT, Vieira HJ, Fatibello-Filho O (2005) J Pharm Biomed Anal 37:771

    Article  CAS  Google Scholar 

  16. Suarez WT, Vieira HJ, Fatibello-Filho O (2005) Acta Chim Slov 52:164

    Google Scholar 

  17. Al-Ghannam SM, El-Brashy AM, Al-Farhan BM (2002) Farmaco 57:625

    Article  CAS  Google Scholar 

  18. Han H, Tachikawa H (2005) Front Biosci 10:931

    Article  CAS  Google Scholar 

  19. Gao ZN, Zhang J, Liu WY (2005) J Electroanal Chem 580:9

    Article  CAS  Google Scholar 

  20. Fawcett WR, Fedurco M, Kovacova Z, Borkowska Z (1994) J Electroanal Chem 368:265

    Article  CAS  Google Scholar 

  21. Suarez WT, Marcolino LH Jr, Fatibello-Filho O (2006) Microchem J 82:163

    Article  Google Scholar 

  22. Salimi A, Hallaj R (2004) Electroanalysis 16:1964

    Article  CAS  Google Scholar 

  23. Pamidi PVA, Wang J (1996) Electroanalysis 8:244

    Article  CAS  Google Scholar 

  24. Golabi SM, Zare H (1994) J Electroanal Chem 465:168

    Article  Google Scholar 

  25. Pariente F, Tobalina F, Moreno G, Hemandez L, Lorenzo E, Abruna HD (1997) Anal Chem 69:4065

    Article  CAS  Google Scholar 

  26. Zare HR, Nasirzadeh N (2006) Electroanalysis 18:507

    Article  CAS  Google Scholar 

  27. Lawrence NS, Davis J, Compton RG (2001) Talanta 53:1089

    Article  CAS  Google Scholar 

  28. Mu S (2006) Biosens Bioelectron 21:1237

    Article  CAS  Google Scholar 

  29. Ralph TR, Hitchman ML, Millington JP, Walsh FC (1994) J Electroanal Chem 375:1

    Article  CAS  Google Scholar 

  30. Pierpoint WS (1996) Biochem J 98:567

    Google Scholar 

  31. Friedman M (1994) J Agric Food Chem 42:3

    Article  CAS  Google Scholar 

  32. Cilliers JJL, Sington VL (1990) J Agric Food Chem 38:1789

    Article  CAS  Google Scholar 

  33. Greef R, Peter R, Pletcher D, Robinson J (1990) Instrumental methods in electrochemistry. Ellis Horwood, Chichester

    Google Scholar 

  34. Galus Z (1994) Fundamentals of electrochemical analysis. Ellis Horwood Press, New York

    Google Scholar 

  35. Organizações Andrei Editora S A (1997) Farmacopéia Brasileira 3rd edn. São Paulo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Raoof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoof, J.B., Ojani, R., Amiri-Aref, M. et al. Catechol as an electrochemical indicator for voltammetric determination of N-acetyl-l-cysteine in aqueous media at the surface of carbon paste electrode. J Appl Electrochem 40, 1357–1363 (2010). https://doi.org/10.1007/s10800-010-0093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0093-y

Keywords

Navigation