Skip to main content

Advertisement

Log in

Design and Tailoring the Optical and Electronic Characteristics of PS/ZnS/SiBr4 New Structures For Electronics Nanodevices

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work aims to design new structures of polystyrene (PS)/zinc sulfide(ZnS)/ silicon bromide(SiBr4) composites to utilize in various electronics and optical nanodevices have unique characteristics like excellent optical and electronic properties with low cost compared to other structures. The structural, electronic and spectral characteristics of PS/ZnS/SiBr4 composites were studied. The optical and electronic characteristics were included the total energy, HOMO/LUMO energies, electronegativity, energy gap, ionization energy, electron affinity, electronic softness, electron density, electrophilic index, dipole moment, density of states, electrostatic surfaces potential and polarizability, UV- spectrum, Raman spectrum, IR-Spectrum and NMR. The results indicated to the PS/ZnS/SiBr4 composites have excellent optoelectronics characteristics and energy gap about 2.12 eV which made it can be considered as promising materials to use in different photonics and optics nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Yes, the data are available.

References

  1. Sheha E, Khoder H, Shanap TS, El-Shaarawy MG, El Mansy MK (2011) Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells, Optik - Int. J Light Electron Opt. https://doi.org/10.1016/j.ijleo.2011.06.066

    Article  Google Scholar 

  2. Neupane HK, Adhikari NP (2020) Structure, electronic and magnetic properties of 2D Graphene-Molybdenum diSulphide (G-MoS2) Heterostructure (HS) with vacancy defects at Mo sites. Computational Condensed Matter 24:e00489

    Article  Google Scholar 

  3. AL-Baradi AM, F.Al-Shehri S, Badawi A, Merazga A, Atta AA (2018) A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite. Results Phys 9. https://doi.org/10.1016/j.rinp.2018.03.039

  4. Al-Shawabkeh AF, Elimat ZM, Abushgair KN (2021) Effect of non-annealed and annealed ZnO on the optical properties of PVC/ZnO nanocomposite films. J of Thermoplastic Composite Materials. https://doi.org/10.1177/08927057211038631

    Article  Google Scholar 

  5. Mohapatra R, Kaundal JB, Goswami YC (2021) Synthesis of reduced graphene oxide/zinc sulfide nano composites with sonochemical route. Chalcogenide Lett 18(5):255–262

  6. Ebnelwaled A. A, H. H. A. Elsheikh and Z. H. Hamed Synthesis and characterization of ZnS nanoparticles by chemical precipitation method, Aswan Univ J Environ Studies, Vol.2, No.2, (2021), https://doi.org/10.21608/AUJES.2021.66918.1014

  7. Gaabour LH (2021) Effect of addition of TiO2 nanoparticles on structural and dielectric properties of polystyrene/polyvinyl chloride polymer blend. AIP Adv 11:105120. https://doi.org/10.1063/5.0062445

    Article  CAS  Google Scholar 

  8. Bani-Salameh AA, Ahmad AA, Alsaad AM, Qattan IA, Aljarrah IA (2021) Synthesis, optical, chemical and thermal characterizations of PMMA-PS/CeO2 Nanoparticles Thin Film. Polymers 13(7):1158. https://doi.org/10.3390/polym13071158

  9. Al-Aaraji, N.AH., Hashim, A., Hadi, A. et al. Synthesis and Enhanced Optical Characteristics of Silicon Carbide/Copper Oxide Nanostructures Doped Transparent Polymer for Optics and Photonics Nanodevices. Silicon (2022). https://doi.org/10.1007/s12633-022-01730-7.

  10. Obaid WO, Hashim A (2022) Synthesis and Augmented Optical Properties of PC/SiC/TaC Hybrid Nanostructures for Potential and Photonics Fields. SILICON. https://doi.org/10.1007/s12633-022-01854-w

    Article  Google Scholar 

  11. Fadil OB, Hashim A (2022) Fabrication and Tailored Optical Characteristics of CeO2/SiO2 Nanostructures Doped PMMA for Electronics and Optics Fields. SILICON. https://doi.org/10.1007/s12633-022-01728-1

    Article  Google Scholar 

  12. Ryabchikov YV, Lukianov A, Oliinyk B et al (2019) Development of silicon nitride-based nanocomposites with multicolour photoluminescence. Appl Phys A 125:630. https://doi.org/10.1007/s00339-019-2915-z

    Article  CAS  Google Scholar 

  13. Ahmed Hashim, Zinah S. Hamad (2020) Lower Cost and Higher UV-Absorption of Polyvinyl Alcohol/ Silica Nanocomposites For Potential Applications, Egypt J Chem, Vol. 63, No.2, https://doi.org/10.21608/EJCHEM.2019.7264.1593.

  14. H. Ahmed, A. Hashim, H.M. Abduljalil, Determination of Optical Parameters of Films Of PVA/TiO2/SiC and PVA/MgO/SiC Nanocomposites For Optoelectronics and UV-Detectors, Ukr J Phys Vol. 65, No. 6, (2020). https://doi.org/10.15407/ujpe65.6.533.

  15. Hashim A (2021) Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures. J Mater Sci: Mater Electron 32:2796–2804. https://doi.org/10.1007/s10854-020-05032-9

    Article  CAS  Google Scholar 

  16. Mukesh kumar and Deepak Bhadu (2019) Design and Simulation of Polyisobutylene /Silicon Nitride for Detection of Gas Sensing. AIP Conf Proc 2166:020002. https://doi.org/10.1063/1.513158

    Article  Google Scholar 

  17. Ahmed H, Hashim A (2021) Exploring the Design, Optical and Electronic Characteristics of Silicon Doped (PS-B) New Structures for Electronics and Renewable Approaches. SILICON. https://doi.org/10.1007/s12633-021-01465-x

    Article  Google Scholar 

  18. Ahmed H, Hashim A (2021) Design and Tailoring the Optical and Electronic Characteristics of Silicon Doped PS/SnS2 New Composites for Nano-Semiconductors Devices. SILICON. https://doi.org/10.1007/s12633-021-01449-x

    Article  Google Scholar 

  19. Ahmed Hashim, Hayder Abduljalil, Hind Ahmed (2019) Analysis of Optical, Electronic and Spectroscopic properties of (Biopolymer-SiC) Nanocomposites For Electronics Applications, Egypt J Chem, Vol.62, https://doi.org/10.21608/EJCHEM.2019.7154.1590.

  20. Ahmed H, Hashim A (2020) Structural, Optical and Electronic Properties of Silicon Carbide Doped PVA/NiO for Low Cost Electronics Applications. SILICON. https://doi.org/10.1007/s12633-020-00543-w

    Article  Google Scholar 

  21. Ahmed H, Hashim A (2021) Exploring the Characteristics of New Structure Based on Silicon Doped Organic Blend for Photonics and Electronics Applications. SILICON. https://doi.org/10.1007/s12633-021-01258-2

    Article  Google Scholar 

  22. Ahmed H, Hashim A, Optimization G (2020) Optical and Electronic Characteristics of Novel PVA/PEO/SiC Structure for Electronics Applications. SILICON. https://doi.org/10.1007/s12633-020-00620-0

    Article  Google Scholar 

  23. Al-Aaraji, N.AH., Hashim, A., Hadi, A. et al. Effect of Silicon Carbide Nanoparticles Addition on Structural and Dielectric Characteristics of PVA/CuO Nanostructures for Electronics Devices. Silicon (2021). https://doi.org/10.1007/s12633-021-01265-3

  24. El Nahrawy AM, Abou Hammad AB, Abdel-Aziz MS et al (2019) Spectroscopic and Antimicrobial Activity of Hybrid Chitosan/Silica Membranes doped with Al2O3 Nanoparticles. SILICON 11:1677–1685. https://doi.org/10.1007/s12633-018-9986-x

    Article  CAS  Google Scholar 

  25. Ahmed Hashim, Hayder M. Abduljalil, Hind Ahmed (2020) Fabrication and Characterization of (PVA-TiO2)1-x/ SiCx Nanocomposites for Biomedical Applications, Egypt J Chem, Vol. 63, No. 1, https://doi.org/10.21608/EJCHEM.2019.10712.1695

  26. Lemraski EG, Tahmasebi Z, Valadbeigi T et al (2019) Incorporation of Iron Nanoparticles into Silicon Carbide Nanoparticles as Novel Antimicrobial Bimetallic Nanoparticles. SILICON 11:857–867. https://doi.org/10.1007/s12633-018-9872-6

    Article  CAS  Google Scholar 

  27. Hadi A, Rashid FL, Hussein HQ, Hashim A (2019) Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conference Series: Materials Science and Engineering 518(3):5. https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  28. Rashid FL, Talib SM, Hadi A, Hashim A (2018) Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf Series: Mater Sci Eng 454:012113. https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  29. Shareef AS, Rashid FL, Hadi A, Hashim A (2019) Water-polyethylene glycol/(SiC-WC) and (CeO2-WC) nanofluids for saving solar energy. Int J Sci Technol Res 8(11):1041–1043

  30. Nagarajan V, Chandiramouli R (2014) Quantum Chemical Studies on ZrN Nanostructures. Int J Chemtech Res 6(1):21–30

    Google Scholar 

  31. Karzazi Y, Belghiti ME, El-Hajjaji F, Hammouti B (2016) Density functional theory modeling and montecarlo simulation assessment of N-substituted quinoxaline derivatives as mild steel corrosion inhibitors in acidic medium. J Mater Environ Sci 7:3916–3929

    CAS  Google Scholar 

  32. Kolawole OA, Banjo S (2018) Theoretical studies of anti-corrosion properties of triphenylimidazole derivatives in corrosion inhibition of carbon steel in acidic media via DFT approach. Anal Bioanal Electrochem 10(1):136–146

    CAS  Google Scholar 

  33. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117(5):369–377

    Article  CAS  Google Scholar 

  34. Toukal L, Keraghel S, Benghanem F, Ourari A (2018) Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivative as an eco-friendly corrosion inhibitor for XC52 steel in hydrochloric acid. Int J ElectrochemSci 13(1):951–974

    Article  CAS  Google Scholar 

  35. Hossain MA, Jewaratnam J, Ramalingam A, Sahu JN, Ganesan P (2018) A DFT method analysis for formation of hydrogen rich gas from acetic acid by steam reforming process. Fuel 212:49–60

    Article  CAS  Google Scholar 

  36. Yu NK, Moon CH, Park J, Shong B (2021) Evaluation of silicon tetrahalide precursors for low-temperature thermal atomic layer deposition of silicon nitride. Appl Surf Sci 565:150603

    Article  CAS  Google Scholar 

  37. Schweizer JI, Sturm AG, Porsch T, Berger M, Bolte M, Auner N, Holthausen MC (2018) Reactions of Si2Br 6 with N-Heterocyclic Carbenes. Zeitschriftfüranorganische und allgemeineChemie 644(17):982–988

    CAS  Google Scholar 

  38. Rottschäfer D, Ebeler F, Strothmann T, Neumann B, Stammler HG, Mix A, Ghadwal RS (2018) The Viability of C5-Protonated-and C4, C5-Ditopic Carbanionic Abnormal NHCs A New Dimension in NHC Chemistry. Chem-A European J 24(15):3716–3720

    Article  Google Scholar 

  39. Madyal RS, Arora JS (2014) DFT studies for the evaluation of amine functionalized polystyrene adsorbents for selective adsorption of carbon dioxide. RSC Adv 4(39):20323–20333

    Article  CAS  Google Scholar 

  40. Ahmed H, Hashim A (2022) Design of Polymer/Lithium Fluoride New Structure for Renewable and Electronics Applications. Trans Electr Electron Mater 23:237–246. https://doi.org/10.1007/s42341-021-00340-1

    Article  Google Scholar 

  41. Wang Y, Xie Y, Wei P, Schaefer HF, Robinson GH (2016) Abnormal carbene–silicon halide complexes. Dalton Trans 45(14):5941–5944

    Article  CAS  Google Scholar 

  42. Hadi S, Hashim A, Jewad A (2011) Optical properties of (PVA-LiF) composites. Aust J Basic Appl Sci 5(9):2192–2195

    CAS  Google Scholar 

  43. M. A. Habeeb, A. Hashim, and A. Hadi, Fabrication of New Nanocomposites: CMC-PAA-PbO2 Nanoparticles for Piezoelectric Sensors and Gamma Radiation Shielding Applications, Sens Lett, Vol.15, No.9, (2017), https://doi.org/10.1166/sl.2017.3877

  44. Ali F Al-Shawabkeh, Ziad M Elimat and Khaleel N Abushgair, Effect of non-annealed and annealed ZnO on the optical properties of PVC/ZnO nanocomposite films, J Thermoplast Compos Mater, (2021), https://doi.org/10.1177/08927057211038631

  45. Rashid FL, Hashim A, Habeeb MA, Salman SR, Ahmed H (2013) Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J Eng Appl Sci 8(5):137–139

    Google Scholar 

  46. Hassen A, El-Sayed S, Morsi WM, El Sayed AM (2014) Preparation, dielectric and optical properties of Cr2O3 /PVC nanocomposite films. J Adv Phys 4(3):571–584

    Article  Google Scholar 

  47. Zein K. Heiba, Mohamed Bakr Mohamed , Sameh.I. Ahmed, Exploring the physical properties of PVA/PEG polymeric material upon doping with nano gadolinium oxide, Alexandria Eng J, (2021), https://doi.org/10.1016/j.aej.2021.08.051

  48. Soleilhavoup M, Bertrand G (2015) Acc Chem Res 48:256–266

    Article  CAS  Google Scholar 

  49. Ahmed H, Hashim A (2020) Lightweight, Flexible and High energies Absorption Property of PbO2 Doped Polymer Blend for Various Renewable Approaches. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  50. Hazim A, Abduljalil HM, Hashim A (2020) Structural, Spectroscopic, Electronic and Optical Properties of Novel Platinum Doped (PMMA/ZrO2) and (PMMA/Al2O3) Nanocomposites for Electronics Devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00210-2

    Article  Google Scholar 

  51. N. S. Alghunaim, Spectroscopic analysis of PMMA/PVC blends containing CoCl2, Results Phys, Vol. 5, (2015), https://doi.org/10.1016/j.rinp.2015.11.003

  52. Hashim A (2020) Enhanced Structural, Optical, and Electronic Properties of In2O3 and Cr2O3 Nanoparticles Doped Polymer Blend for Flexible Electronics and Potential Applications. J Inorg Organomet Polym 30:3894–3906. https://doi.org/10.1007/s10904-020-01528-3

    Article  CAS  Google Scholar 

  53. Jebur QM, Hashim A, Habeeb MA (2019) Structural, Electrical and Optical Properties for (Polyvinyl Alcohol-Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  54. Hazim A, Hashim A, Abduljalil HM (2019) Analysis of Structural and Electronic, properties of Novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA -Ag) Nanocomposites for Low Cost Electronics and Optics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

  55. Hashim A (2021) Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron 53:478. https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  56. Hazim A, Abduljalil HM, Hashim A (2021) Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications. Trans Electr Electron Mater 22:851–868. https://doi.org/10.1007/s42341-021-00308-1

    Article  Google Scholar 

  57. Hazim A, Abduljalil HM, Hashim A (2020) First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00224-w

    Article  Google Scholar 

  58. Hashim A (2021) Synthesis of SiO2/CoFe2O4 Nanoparticles Doped CMC: Exploring the Morphology and Optical Characteristics for Photodegradation of Organic Dyes. J InorgOrganomet Polym 31:2483–2491. https://doi.org/10.1007/s10904-020-01846-6

    Article  CAS  Google Scholar 

  59. Laila H (2020) Gaabour, Analysis of Spectroscopic, Optical and Magnetic Behaviour of PVDF/PMMA Blend Embedded by Magnetite (Fe3O4) Nanoparticles. Optics and Photonics Journal 10:197–209. https://doi.org/10.4236/opj.2020.108021

    Article  CAS  Google Scholar 

  60. Francis P, Patil S, Rajesh C et al (2013) Electronic and optical properties of agglomerated hydrogen terminated silicon nanoparticles. Eur Phys J D 67:144. https://doi.org/10.1140/epjd/e2013-40052-3

    Article  CAS  Google Scholar 

  61. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model 26:210. https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  Google Scholar 

  62. Aberle AG (1999) Crystalline silicon solar cells: advanced surface passivation and analysis. University of New South wales, Centre for Photovoltaic Engineering

    Google Scholar 

  63. Wager JF, Kuhn K (2017) Device physics modeling of surfaces and interfaces from an induced gap state perspective. Crit Rev Solid State Mater Sci 42(5):373–415

    Article  CAS  Google Scholar 

  64. Heine V (1965) Theory of surface states. Phys Rev 138(6A):A1689

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgment to University of Babylon.

Author information

Authors and Affiliations

Authors

Contributions

Hind Ahmed and Ahmed Hashim.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Conflict of Interest

no conflict of interest.

Consent to participate

consent to participate.

Consent for Publication

consent for publication.

Ethics approval

(Research involving human participants, their data or biological) material.

The Research is not involving the studies on human or their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Hashim, A. Design and Tailoring the Optical and Electronic Characteristics of PS/ZnS/SiBr4 New Structures For Electronics Nanodevices. Silicon 15, 83–91 (2023). https://doi.org/10.1007/s12633-022-01978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01978-z

Keywords

Navigation