Skip to main content
Log in

(Ti-Mo-Zr)60AlxSiy High Entropy Alloy: Correlation Between Microstructure, Mechanical, and Corrosion Properties

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Multicomponent (Ti, Mo, Zr, Al, and Si) high-entropy alloys (HEAs) are prepared via high energy ball milling technique and followed by spark plasma sintering (SPS) technique for their compaction using the general formula (Ti-Mo-Zr)60AlxSiy (labeled as (TMZ)60AlxSiy)) where x & y as at% of equiatomic and non-equiatomic stoichiometric ratios of Ti, Mo, Zr, Al, and Si elements. XRD traces recorded the presence of FCC and BCC solid solution phases, at 20 h of milling schedule and stability of as precipitated phases are analyzed using DSC profiles. Mechanical properties include maximum load, compressive strength, Young’s Modulus, and Vickers’s hardness are acquired to be maximum for equiatomic (TMZ)60Al30Si10 HEA pellet (rate of heat treatment: 125 °C/min), compared with all other compositions under investigation. The superior corrosion properties such as corrosion current density (ic), passive current density (ip), corrosion potential (Ec), and passive potential (Ep) of obtained non-equiatomic (TMZ)60Al30Si10 HEA pellet made this group of the network an expected possibility for use in lightweight vehicle applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data and material will be available on demand.

References

  1. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) Mater Today 19(6):349–362

    Article  CAS  Google Scholar 

  2. Ghiban B, Popescu. G, DumitrescuD, Soare V (2017) Key Eng Mater Trans Tech Publ

  3. Fazakas E, Varga B, Varga L (2013) ISRN Mech Eng

  4. Zhou YJ, Zhang Y, Wang YL, Chen GL (2007) Mater Sci Eng 454:260–265

    Article  Google Scholar 

  5. Gorsse S, Nguyen MH, Senkov ON, Miracle DB (2018) Data Br 21:2664–2678

  6. Feng R, Gao MC, Lee C, Mathes M, Zuo T, Chen (2016) Smdpi.com. 18(9):333

  7. Chae MJ, Sharma A, Oh MC, Ahn B (2021) Met Mater Int 27(4):629–638

    Article  CAS  Google Scholar 

  8. Kumar A, Gupta M (2016) Metals. 2016. mdpi.com A review. Metals 6(9):1–19

  9. Sanchez JM, Vicario I, Albizuri J, Guraya T, Garcia JC (2019) J Mater Sci Technol 8(1):795–803

    CAS  Google Scholar 

  10. Li Z, Raabe D (2017) Jom 69(11):2099–2106

    Article  CAS  PubMed  Google Scholar 

  11. Youssef KM, Zaddach AJ, Niu C, Irving DL, Koch CC (2015) Mater 3(2):95–99

    CAS  Google Scholar 

  12. Stepanov ND, Shaysultanov DG, Salishchev GA, Tikhonovsky MA (2015) Mater 142:153–155

    CAS  Google Scholar 

  13. Zhou Y, Jin X, Du XY, Zhang L, Li BS (2018) J Mater Sci Technol 34(8):988–991

    Article  CAS  Google Scholar 

  14. Du XH, Wang R, Chen C, Wul BL, Huang JC (2017) Key Eng Trans Tech Publ.l

  15. Sharma A, Oh MC, Ahn B (2020) Mater Sci Eng: A 797:140066

    Article  CAS  Google Scholar 

  16. Lin CM, Juan CC, Chang CH, Tsai CW, WeiYeh J (2015) J Alloys Compd 624:100–107

    Article  CAS  Google Scholar 

  17. Tseng KK, Yang YC, Juan CC, Chin TS, Tsai CW, Yeh JW (2018) Sci China Technol Sci 61(2):184–188

    Article  CAS  Google Scholar 

  18. Kanyane LR, Popoola API, Malatji N (2020) PN Sibisi Mater Today 28:1231–1238

    CAS  Google Scholar 

  19. Zhi Q, Tan X, Liu Z, Liu Y, Zhang Q, Chen Y, Li M (2021) Micron 144:103031

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Zhang Y (2019) Engineering steels and high entropy-Alloys. IntechOpen

  21. Varalakshmi S, Kamaraj M, Murty B (2010) Metall Mater Trans A Phys Metall Mater Sci 41(10):2703–2709

    Article  Google Scholar 

  22. Mridha S, Samal S, Khan PY, Biswas K (2013) Govind. Metall Mater Trans A Phys Metall Mater Sci 44(10):4532–4541

    Article  CAS  Google Scholar 

  23. Wang Y, Li A, Wei S, Wu Y, Wang Ch (2021) J Phys: Conference Series. IOP Publishing

  24. Nam S, Kim MJ, Hwang JY, Choi H (2018) J Alloys Compd 762:29–37

    Article  CAS  Google Scholar 

  25. Samaei A, Mirsayar M, Aliha M (2015) Eng Solid Mech 3(1):1–20

    Article  Google Scholar 

  26. Pradeep KG, Tasan CC, Yao MJ, Deng Y (2015) Mater Sci Eng 648:183–192

    Article  CAS  Google Scholar 

  27. Maulik O, Kumar D, Kumar S, Kumar SD, Kumar V (2018) Mater Res Express 5(5):052001

    Article  Google Scholar 

  28. Kang B, Kong T, Ryu HJ, Hong SH (2021) J Mater Sci Technol 69:32–41

    Article  CAS  Google Scholar 

  29. Sekhar RA, Samal S, Nayan N, Bakshi SR (2019) J Alloys Compd 787:123–132

    Article  Google Scholar 

  30. Sharma AS, Yadav S, Biswas K, Basu B (2018) Mater Sci Eng: Rep 131:1–42

    Article  Google Scholar 

  31. Huang X, Miao J, Luo AA (2019) J Mater Sci 54(3):2271–2277

    Article  CAS  Google Scholar 

  32. Shao L, Zhang T, Li L, Zhao Y, Huang J, Liaw PK, Zhang Y (2018) J Mater Eng 27(12):6648–6656

    CAS  Google Scholar 

  33. Feng R, Gao MC, Zhang C, Guo W, Poplawsky JD, Jeffrey FZ, Joerg AH, Neuefeind C, Ren Y, Liaw PK (2018) Acta Mater 146:280–293

    Article  CAS  Google Scholar 

  34. Cheng J, Cai Q, Zhao B, Yang S, Chen F, Li B (2016) ARPNJ Eng Appl Sci 11(1):659–665

    Google Scholar 

  35. Tang Z, Gao MC, Diao H, Yang T, Liu J, Zuo T, Zhang Y (2013) Jom 65(12):1848–1858

    Article  CAS  Google Scholar 

  36. Guddla GT, Ambadipudi S, Katta VK, Katari NK (2021) Silicon :1–11

  37. Dada M, Popoola P, Mathe N, Adeosun S (2021) Int J Lightweight Mater Manuf 4(3):339–345

    CAS  Google Scholar 

  38. Chen Z, Chen W, Wu B, Cao X, Liu L, Fu Z (2015) Mater Sci Eng 648:217–224

    Article  CAS  Google Scholar 

  39. Tian Q, Zhang G, Yin K, Wang L, Wang W, Cheng W (2020) Intermetallics 119:106707

  40. Praveen S, Anupam A, Sirasani T, Murty BS, Kottada RS (2013) Trans Indian Inst 66(4):369–373

    Article  CAS  Google Scholar 

  41. Huang KJ, Lin X, Wang YY, Xie CS, Yue TM (2014) Mater Res Innov 18(sup2):S2-1008-S2-1011

  42. Guddla GT, Katta VK, Gandi S, Ambadipudi S, Ravuri BR (2021) Phase Transit 94(10):679–690

    Article  CAS  Google Scholar 

  43. Guddla GT, Ambadipudi S, Yenduva S, Katta VK, Ravuri BR (2021) Silicon :1–9

  44. Han LX, Wang CM, Sun HF (2016) Mater Trans 57(7):1134–1137

    Article  CAS  Google Scholar 

  45. Lin CM, Tsai HL (2011) Intermetallics 19(3):288–294

    Article  CAS  Google Scholar 

  46. Cai AH, Xiong X, Liu Y, An WK, Zhou GJ, Luo Y, Li TL (2012) Mater Chem Phys 134(2–3):938–944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Mrs. Tanu Sri Vasthava, Scientist “G” DMRL, and Hyderabad for helping out us to carryout SEM analysis. This work is partially supported by GITAM (Deemed to be university), under seed grant with grant No: 2021/0033.

Author information

Authors and Affiliations

Authors

Contributions

Kiran Kumar Karnati (Lead) – Conceptualization, Eshwaraiah Punna and Kiran Kumar Karnati (Lead) - Data curation, Kiran Kumar Karnati, and Swamy Naidu Neigapula Venkata (Lead) – Methodology, Kiran Kumar Karnati and Balaji Rao Ravuri (Lead) – Conceptualization, Data curation and Drafting.

Corresponding author

Correspondence to Balaji Rao Ravuri.

Ethics declarations

Conflict of Interest

The author declares that there are no known conflicts of interest associated with this publication.

Researches Involving Human Participation and/ or Animals

All procedures performed in studies involving human participants were following the ethical standards of the institutional and/ or national research committee and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the Welfare of Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Participation consent was obtained from all individual participants included in the study.

Consent for Publications

Participation consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnati, K.K., Punna, E., Venkata, S.N.N. et al. (Ti-Mo-Zr)60AlxSiy High Entropy Alloy: Correlation Between Microstructure, Mechanical, and Corrosion Properties. Silicon 14, 10637–10650 (2022). https://doi.org/10.1007/s12633-022-01779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01779-4

Keywords

Navigation