Skip to main content
Log in

Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-phase equiatomic AlCrTiV high-entropy alloy has high hardness and relative low density. Further hardness increase was achieved through the addition of lightweight microalloying elements, based on calculation of phase diagram (CALPHAD) modeling. According to the results of CALPHAD calculation, microalloying equiatomic AlCrTiV high-entropy alloy with boron, carbon, and silicon will result in the formation of secondary phases. CALPHAD calculation also shows addition of lightweight elements can affect the order–disorder transition of microalloyed AlCrTiV high-entropy alloy. Dual-phase microstructure consisting of BCC_B2 matrix and an intermetallic phase is observed in these microalloyed alloys. Electron microscopy characterization confirms that the experimental results are consistent with CALPHAD prediction. Microalloyed AlCrTiV alloys have density close to 4.5 g cm−3 and hardness up to 710 HV. Compared to other high-entropy alloys, the microalloyed AlCrTiV alloys have a good combination of specific hardness, low cost, and ease of manufacturing, and thus they are promising for lightweight applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218

    Article  Google Scholar 

  2. Gludovatz B, Hohenwarter A, Catoor D et al (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science (80-) 345:1153–1158

    Article  Google Scholar 

  3. Otto F, Dlouhý A, Somsen C et al (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater 61:5743–5755

    Article  CAS  Google Scholar 

  4. Miao J, Slone CE, Smith TM et al (2017) The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy. Acta Mater 132:35–48

    Article  CAS  Google Scholar 

  5. Pickering EJ, Muñoz-Moreno R, Stone HJ, Jones NG (2016) Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr Mater 113:106–109

    Article  CAS  Google Scholar 

  6. He F, Wang Z, Wu Q et al (2017) Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr Mater 126:15–19

    Article  CAS  Google Scholar 

  7. Otto F, Dlouhý A, Pradeep KG et al (2016) Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112:40–52

    Article  CAS  Google Scholar 

  8. Miao J, Slone CE, Smith TM et al (2017) The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy. Acta Mater 132:35–48

    Article  CAS  Google Scholar 

  9. Senkov ON, Scott JM, Senkova SV et al (2011) Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 509:6043–6048

    Article  CAS  Google Scholar 

  10. Senkov ON, Scott JM, Senkova SV et al (2012) Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci 47:4062–4074. https://doi.org/10.1007/s10853-012-6260-2

    Article  CAS  Google Scholar 

  11. Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Mechanical properties of Nb 25Mo25Ta25W25 and V20Nb20Mo20Ta20W20. Intermetallics 19:698–706

    Article  CAS  Google Scholar 

  12. Yeh JW, Chen SK, Lin SJ et al (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303

    Article  CAS  Google Scholar 

  13. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61:2628–2638

    Article  CAS  Google Scholar 

  14. Pradeep KG, Wanderka N, Choi P et al (2013) Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater 61:4696–4706

    Article  CAS  Google Scholar 

  15. Villars P, Okamoto H, Cenzual K (2016) ASM alloy phase diagram database. ASM International, Materials Park, OH

    Google Scholar 

  16. Luo AA, Sun W, Huang X (2016) High-entropy AlCrTiV alloys. US Patent 62/415691

  17. Qiu Y, Hu YJ, Taylor A et al (2017) A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater 123:115–124

    Article  CAS  Google Scholar 

  18. Murty BS, Yeh JW, Ranganathan S (2014) High-entropy alloys. Butterworth-Heinemann, Oxford

    Book  Google Scholar 

  19. Gwalani B, Soni V, Lee M et al (2017) Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater Des 121:254–260

    Article  CAS  Google Scholar 

  20. He JY, Wang H, Huang HL et al (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196

    Article  CAS  Google Scholar 

  21. Xiaotao L, Wenbin L, Lijuan M et al (2016) Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng 45:2201–2207

    Article  Google Scholar 

  22. Jiang H, Han K, Qiao D, et al (2018) Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater Chem Phys 210:43–48

    Article  CAS  Google Scholar 

  23. Sun W, Huang X, Luo AA (2017) Phase formations in low density high entropy alloys. CALPHAD Comput Coupling Phase Diagr Thermochem 56:19–28

    Article  CAS  Google Scholar 

  24. Li C, Li JC, Zhao M, Jiang Q (2010) Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J Alloys Compd 504:S515–S518

    Article  Google Scholar 

  25. Wang W-R, Wang W-L, Wang S-C et al (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51

    Article  Google Scholar 

  26. Yurchenko NY, Stepanov ND, Shaysultanov DG et al (2016) Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater Charact 121:125–134

    Article  CAS  Google Scholar 

  27. Tseng KK, Yang YC, Juan CC, et al (2018) A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci China Technol Sci 61:184–188

    Article  CAS  Google Scholar 

  28. Stepanov ND, Shaysultanov DG, Salishchev GA, Tikhonovsky MA (2015) Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett 142:153–155

    Article  CAS  Google Scholar 

  29. Hammond VH, Atwater MA, Darling KA et al (2014) Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying. JOM 66:2021–2029

    Article  CAS  Google Scholar 

  30. Youssef KM, Zaddach AJ, Niu C et al (2014) A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett 3:95–99

    Article  Google Scholar 

  31. Li R, Gao JC, Fan K (2010) Study to microstructure and mechanical properties of Mg containing high entropy alloys. Mater Sci Forum 650:265–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from The Ohio State University (OSU) and helpful discussions with Dr. Weihua Sun, a former postdoctoral researcher at OSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan A. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Miao, J. & Luo, A.A. Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying. J Mater Sci 54, 2271–2277 (2019). https://doi.org/10.1007/s10853-018-2970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2970-4

Keywords

Navigation