Skip to main content
Log in

A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A light-weight high-entropy alloy (LWHEA) Al20Be20Fe10Si15Ti35 has been developed to have unique mechanical properties and oxidation resistance. One major and two minor phases are observed in the as-cast microstructure. The density of the alloy is 3.91 g cm−3, and its hardness is HV 911, which is higher than quartz. The hardness and hardness to density ratio are the highest of all light-weight alloys reported before. In addition, it has excellent oxidation resistance at 700°C and 900°C, which far exceeds that of Ti-6Al-4V. Thus, the combination of properties is promising for high-temperature applications, which require light weight, wear-resistant and oxidation-resistant components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Committee H. Metals Handbook, Properties and Selection: Irons, Steels, and High Performance Alloys. Ohio: ASM international, Materials Park, 1990

    Google Scholar 

  2. Committee H. Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Ohio: ASM international, Materials Park, 1990

    Google Scholar 

  3. Greer A L. Confusion by design. Nature, 1993, 366: 303–304

    Article  Google Scholar 

  4. Swalin R A. Thermodynamics of Solids. New York: Wiley, 1972

    MATH  Google Scholar 

  5. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  Google Scholar 

  6. Yeh J W. Recent progress in high-entropy alloys. Ann Chim Sci Mat, 2006, 31: 633–648

    Article  Google Scholar 

  7. Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater, 2012, 60: 5723–5734

    Article  Google Scholar 

  8. Tang Z, Yuan T, Tsai C W, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater, 2015, 99: 247–258

    Article  Google Scholar 

  9. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  Google Scholar 

  10. Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Sci, 2017, 119: 33–45

    Article  Google Scholar 

  11. Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals, 2017, 7: 43

    Article  Google Scholar 

  12. Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  13. Yeh J W. Physical metallurgy of high-entropy alloys. JOM, 2015, 67: 2254–2261

    Article  Google Scholar 

  14. Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511

    Article  Google Scholar 

  15. Smith W F. Structure and Properties of Engineering Alloys. New York: McGraw-Hill, 1993

    Google Scholar 

  16. Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765

    Article  Google Scholar 

  17. Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698–706

    Article  Google Scholar 

  18. Senkov O, Isheim D, Seidman D, et al. Development of a refractory high entropy superalloy. Entropy, 2016, 18: 102

    Article  Google Scholar 

  19. Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater Sci Eng-A, 2013, 565: 51–62

    Article  Google Scholar 

  20. Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci, 2012, 47: 6522–6534

    Article  Google Scholar 

  21. Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys. Mater Sci Tech, 2015, 31: 1184–1193

    Article  Google Scholar 

  22. Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153–155

    Article  Google Scholar 

  23. Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys. J Alloys Compd, 2015, 652: 266–280

    Article  Google Scholar 

  24. Li R, Gao J C, Fan K. Study to microstructure and mechanical properties of mg containing high entropy alloys. MSF, 2010, 650: 265–271

    Article  Google Scholar 

  25. Hammond V H, Atwater M A, Darling K A, et al. Equal-channel angular extrusion of a low-density high-entropy alloy produced by highenergy cryogenic mechanical alloying. JOM, 2014, 66: 2021–2029

    Article  Google Scholar 

  26. Yang X, Chen S Y, Cotton J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM, 2014, 66: 2009–2020

    Article  Google Scholar 

  27. Youssef K M, Zaddach A J, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3: 95–99

    Article  Google Scholar 

  28. Wikipedia. Beryllium. Retrieved 22 April 2017. Https://en.wikipedia.org/wiki/Beryllium, 2017

  29. Deoboer F R, Boom R, Mattens W C, et al. Cohesion in Metals: Transition Metal Alloys. Amsterdam: Elsevier Scientific Publisher, 1988

    Google Scholar 

  30. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829

    Article  Google Scholar 

  31. Dieter G E, Bacon D J. Mechanical Metallurgy. New York: McGraw- Hill, 1988

    Google Scholar 

  32. Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness. Mater Sci Eng-A, 2011, 529: 62–73

    Article  Google Scholar 

  33. Ashby M F. Materials Selection in Mechanical Design. Burlington: Butterworth-Heinemann, 2011

    Google Scholar 

  34. Frangini S, Mignone A, de Riccardis F. Various aspects of the air oxidation behaviour of a Ti6Al4V alloy at temperatures in the range 600°C–700°C. J Mater Sci, 1994, 29: 714–720

    Article  Google Scholar 

  35. Greene G A, Finfrock C C. Oxidation of inconel 718 in air at high temperatures. Oxid Met, 2001, 55: 505–521

    Article  Google Scholar 

  36. Bai C Y, Luo Y J, Koo C H. Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation. Surf Coat Tech, 2004, 183: 74–88

    Article  Google Scholar 

  37. Pfennig A, Fedelich B. Oxidation of single crystal PWA 1483 at 950°C in flowing air. Corros Sci, 2008, 50: 2484–2492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JienWei Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, K., Yang, Y., Juan, C. et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci. China Technol. Sci. 61, 184–188 (2018). https://doi.org/10.1007/s11431-017-9073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9073-0

Keywords

Navigation