Skip to main content
Log in

Effect of Tensile Strain on Performance Parameters of Different Structures of MoS2 Monolayer

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work is based on the computational study of MoS2 monolayer and effect of tensile strain on its atomic level structure. The bandgap for MoS2 monolayer, defected MoS2 monolayer and Silicon-doped monolayer are 1.82 eV (direct bandgap), 0.04 (indirect bandgap) and 1.25 eV (indirect bandgap), respectively. The impact of tensile strain (0-0.7 %) on the bandgap and effective mass of charge carriers of these MoS2 structures has been investigated. The bandgap decrease of 5.76 %, 31.86 % and 6.03 % has been observed in the three structures for biaxial strain while the impact of uniaxial strain is quite low. The impact of higher temperature on the bandgap under biaxial tensile strain has been also analyzed in this paper. These observations are extremely important for 2D material-based research for electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

We have used VNL-ATK QuantumWise Software for implementation.

References

  1. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel J, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Joseph JD, Kumaragurubaran B, Sathish S (2019) Effect of MoS2 on the wear behavior of Aluminium (AlMg0. 5Si) composite. Silicon 12:1–9. https://doi.org/10.1007/s12633-019-00238-x

    Article  CAS  Google Scholar 

  3. Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S (2010) Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem 20:8912–8919. https://doi.org/10.1039/C0JM01072C

    Article  CAS  Google Scholar 

  4. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  5. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30. https://doi.org/10.1039/C0NR00323A

    Article  CAS  PubMed  Google Scholar 

  6. Boochani A, Veisi S (2018) The vanadium effect on electronic and optical response of MoS2 graphene-like: using DFT. Silicon 10:2855–2863. https://doi.org/10.1007/s12633-018-9825-0

    Article  CAS  Google Scholar 

  7. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233

    Article  CAS  PubMed  Google Scholar 

  9. Geim AK, Novoselov KS (2010) The rise of graphene.: a review. Nanosci Technol :11–19. https://doi.org/10.1142/9789814287005_0002

  10. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  11. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  PubMed  Google Scholar 

  12. Beiranvand R, Valedbagi S (2016) Electronic and optical properties of advance semiconductor materials: BN, AlN and GaN nanosheets from first principles. Optik 127:1553–1560. https://doi.org/10.1016/j.ijleo.2015.10.194

    Article  CAS  Google Scholar 

  13. Shi Z, Zhang Z, Kutana A, Yakobson BI (2015) Predicting two-dimensional silicon carbide monolayers. ACS Nano 9:9802–9809. https://doi.org/10.1021/acsnano.5b02753

    Article  CAS  PubMed  Google Scholar 

  14. Javan MB (2016) Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals. J Magn Magn Mater 401:656–661. https://doi.org/10.1016/j.jmmm.2015.10.103

    Article  CAS  Google Scholar 

  15. Beiranvand R, Valedbagi S (2015) Electronic and optical properties of h-BN nanosheet: A first principles calculation. Diam Relat Mater 58:190–195. https://doi.org/10.1016/j.diamond.2015.07.008

    Article  CAS  Google Scholar 

  16. Chaurasiya R, Dixit A, Pandey R (2019) Strain-driven thermodynamic stability and electronic transitions in ZnX (X = O, S, Se, and Te) monolayers. J Appl Phys 125:082540. https://doi.org/10.1063/1.5053680

    Article  CAS  Google Scholar 

  17. Pradhan D, Kar JP (2021) Role of process parameters on microstructural and electronic properties of rapid thermally grown MoS2 thin films on silicon substrates. Silicon 1–11. https://doi.org/10.1007/s12633-021-00959-y

  18. Aghili S, Beiranvand R, Elahi SM, Abolhasani MR (2016) Half-metallic ferromagnetism in Mn-doped zigzag AlN nanoribbon from first-principles. J Magn Magn Mater 420:122–128. https://doi.org/10.1016/j.jmmm.2016.06.067

    Article  CAS  Google Scholar 

  19. Beiranvand R (2016) Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles. Rare Met 35:771–778. https://doi.org/10.1007/s12598-015-0471-z

    Article  CAS  Google Scholar 

  20. Chegeni M, Beiranvand R, Valedbagi S (2017) Generating tunable magnetism in AlN nanoribbons using anion/cation vacancies: a first-principles prediction. Braz J Phys 47:137–144. https://doi.org/10.1007/s13538-016-0480-x

    Article  CAS  Google Scholar 

  21. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  22. Peres NM, Araújo MA, Bozi D (2004) Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers. Phys Rev B 70:195122. https://doi.org/10.1103/PhysRevB.70.195122

    Article  CAS  Google Scholar 

  23. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. https://doi.org/10.1038/nnano.2012.193

    Article  CAS  PubMed  Google Scholar 

  24. Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44:2584–2586. https://doi.org/10.1039/C5CS90037A

    Article  CAS  PubMed  Google Scholar 

  25. Fiori G, Bonaccorso F, Iannaccone G, Tomás Palacios, Neumaier D, Seabaugh A, Banerjee SK, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768–779. https://doi.org/10.1038/nnano.2014.207

    Article  CAS  PubMed  Google Scholar 

  26. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126. https://doi.org/10.1016/j.pmatsci.2015.02.002

    Article  CAS  Google Scholar 

  27. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805. https://doi.org/10.1103/PhysRevLett.105.136805

    Article  CAS  PubMed  Google Scholar 

  28. Gutierrez HR, Perea-Lopez N, Elías AL, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi VH, Terrones H, Terrones M (2013) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13:3447–3454. https://doi.org/10.1021/nl3026357

    Article  CAS  PubMed  Google Scholar 

  29. Chang CH, Fan X, Lin SH, Kuo JL (2013) Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys Rev B 88:195420. https://doi.org/10.1103/PhysRevB.88.195420

    Article  CAS  Google Scholar 

  30. Deng S, Li L, Li M (2018) Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. Physica E 101:44–49. https://doi.org/10.1016/j.physe.2018.03.016

    Article  CAS  Google Scholar 

  31. Wang X, Shi J (2017) Strain effects on the interaction between NO2 and the Mo-edge of the MoS2 zigzag nanoribbon. IEEE Trans Nanotechnol 16:982–990. https://doi.org/10.1109/TNANO.2017.2737942

    Article  Google Scholar 

  32. Yu S, Xiong HD, Eshun K, Yuan H, Li Q (2015) Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain. Appl Surf Sci 325:27–32. https://doi.org/10.1016/j.apsusc.2014.11.079

    Article  CAS  Google Scholar 

  33. Ni J, Quintana M, Jia F, Song S (2021) Tailoring the electronic and optical properties of layered blue phosphorene/XC (X = Ge, Si) vdW heterostructures by strain engineering. Physica E 127:114460. https://doi.org/10.1016/j.physe.2020.114460

    Article  CAS  Google Scholar 

  34. Beiranvand R (2021) Theoretical investigation of electronic and optical properties of 2D transition metal dichalcogenides MoX2 (X = S, Se, Te) from first-principles. Physica E 126:114416. https://doi.org/10.1016/j.physe.2020.114416

    Article  CAS  Google Scholar 

  35. Almayyali AO, Muhsen HO, Merdan M, Obeid MM, Jappor HR (2021) Two-dimensional ZnI2 monolayer as a photocatalyst for water splitting and improvement its electronic and optical properties by strains. Physica E 126:114487. https://doi.org/10.1016/j.physe.2020.114487

    Article  CAS  Google Scholar 

  36. Liu MY, Gong L, Li WZ, Zhang ML, He Y, Cao C (2021) Band engineering of XBi (X = Si, Ge, Sn, and Pb) single layers via strain and surface chemical-modulation. Appl Surf Sci 540:148268. https://doi.org/10.1016/j.apsusc.2020.148268

    Article  CAS  Google Scholar 

  37. Solyaev Y, Lurie S (2021) Electric field, strain and inertia gradient effects on anti-plane wave propagation in piezoelectric materials. J Sound Vib 494:115898. https://doi.org/10.1016/j.jsv.2020.115898

    Article  Google Scholar 

  38. Li H, Hou J, Duan Q, Jiang D (2021) Hexagonal borophene sandwiched between blue phosphorenes: A novel bonding heterostructure as an anchoring material for lithium-sulfur batteries. Appl Surf Sci 545:148770. https://doi.org/10.1016/j.apsusc.2020.148770

    Article  CAS  Google Scholar 

  39. Hoat DM, Ponce-Perez R, Vu TV, Rivas-Silva JF, Cocoletzi GH (2021) Theoretical analysis of the HfS2 monolayer electronic structure and optical properties under vertical strain effects. Optik 225:165718. https://doi.org/10.1016/j.ijleo.2020.165718

    Article  CAS  Google Scholar 

  40. Phuc HV, Hieu NN, Ilyasov VV, Phuong LTT, Nguyen CV (2018) First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering. Superlattices Microstruct 118:289–297. https://doi.org/10.1016/j.spmi.2018.04.018

    Article  CAS  Google Scholar 

  41. Naseri M, Hoat DM, Salehi K, Amirian S (2020) Theoretical prediction of 2D XI2 (X = Si, Ge, Sn, Pb) monolayers by density functional theory. J Mol Graph Model 95:107501. https://doi.org/10.1016/j.jmgm.2019.107501

    Article  CAS  PubMed  Google Scholar 

  42. QuantumWise, QuantumWise (Online). Available: https://www.quantumwise.com/. Accessed 12 Feb 2021

  43. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  44. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45:503–528. https://doi.org/10.1007/BF01589116

    Article  Google Scholar 

  45. Cai Y, Zhang G, Zhang YW (2014) Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J Am Chem Soc 136:6269–6275. https://doi.org/10.1021/ja4109787

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Electronics and Communication Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India for providing valuable support to carry out this study in VLSI & Nano Laboratory.

Funding

The authors are thankful to National Institute of Technology Hamirpur (HP) for supporting this research work. However, no funding was received with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, simulation and analysis. All the authors have contributed in writing the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Priya Kaushal.

Ethics declarations

Conflicts of Interest/Competing Interest

Authors have no conflict of interest. 

Ethics Approval

The reported work did not involve any human’s participation and/or did not harm welfare of animals.

Consent to Participate

Not required as this manuscript does not contain participation of humans/children/animals.

Consent for Publication

Not required as this manuscript does not contain participation of humans/children/animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, P., Chaudhary, T. & Khanna, G. Effect of Tensile Strain on Performance Parameters of Different Structures of MoS2 Monolayer. Silicon 14, 4935–4943 (2022). https://doi.org/10.1007/s12633-021-01256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01256-4

Keywords

Navigation