Skip to main content
Log in

Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of Cd impurity on the electronic structure and magnetic properties of hydrogen-terminated AlN nanoribbons with zigzag edges (ZAlNNRs) was investigate using the band structure results obtained through the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT). The exchange correlation potential was treated by the generalized gradient approximation within the Perdew scheme. The calculated results show that the H-terminated zigzag AlN nanoribbon is semiconducting and nonmagnetic material with a direct band gap of about 2.78 eV, while the Cd-doped H-terminated ZAlNNR structures show complete (100 %) spin polarization very close to the Fermi level, which will result in spin-anisotropic transport. The charge transport is totally dominated by Cd spin down electrons in the H-terminated ZAlNNR. These results suggest potential applications for the development of using the AlN nanoribbons in nanoelectronics and magnetoelectronic devices as a base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  Google Scholar 

  2. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183.

    Article  Google Scholar 

  3. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK. Room-temperature quantum hall effect in graphene. Science. 2007;315(5817):1379.

    Article  Google Scholar 

  4. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett. 2008;100(1):016602.

    Article  Google Scholar 

  5. CastroNeto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109.

    Article  Google Scholar 

  6. Zhou J, Wang Q, Sun Q, Jena P. Stability and electronic structure of bilayer graphone. Appl Phys Lett. 2011;98(6):063108.

    Article  Google Scholar 

  7. Son YW, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature. 2006;444(7117):347.

    Article  Google Scholar 

  8. Slotman GJ, Fasolino A. Structure, stability and defects of single layer h-BN in comparison to graphene. J Phys Cond Matter. 2011;25(4):045009.

    Article  Google Scholar 

  9. Ataca C, Şahin H, Aktürk E, Ciraci S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J Phys Chem C. 2011;115(10):3934.

    Article  Google Scholar 

  10. Li YR, Liu XZ, Zhu J, Zhang JH, Qian LX, Zhang WL. Dielectric thin films for GaN-based high-electron-mobility transistors. Rare Met. 2015;. doi:10.1007/s12598-015-0451-3.

    Google Scholar 

  11. Zhang YP, Liu W, Liu BD, Wang RM. Morphology–structure diversity of ZnS nanostructures and their optical properties. Rare Met. 2014;33(1):1.

    Article  Google Scholar 

  12. Ruterana P, Albrecht M, Neugebauer J. Nitride Semiconductors: Handbook on Materials and Devices. New York: Wiley; 2006. 22.

    Google Scholar 

  13. Strite S, Morkoc H. GaN, AlN, InN: a review. J Vac Sci Tech B Microelectron Nanomater Struct. 1992;10(4):1237.

    Article  Google Scholar 

  14. Wang AJ, Shang SL, Du Y, Kong Y, Zhang LJ, Chen L, Zhao DD, Liu ZK. Sturctural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations. Comput Mater Sci. 2010;48(3):705.

    Article  Google Scholar 

  15. Luan HX, Zhang CW, Yan SS. Novel electronic and magnetic properties in AlN nanoribbons: first-principles prediction. Eur Phys Lett. 2013;103(3):37009.

    Article  Google Scholar 

  16. Zhang D, Zhang RQ. Theoretical prediction on aluminum nitride nanotubes. Chem Phys Lett. 2003;371(3–4):426.

    Article  Google Scholar 

  17. Du AJ, Zhu ZH, Chen Y, Lu GQ, Smith Sean C. First principle studies of zigzag AlN nanoribbon. Chem Phys Lett. 2009;469(1–3):183.

    Article  Google Scholar 

  18. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Austria, Vienna: Vienna University of Technology; 2001. 1.

  19. Perdew P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1997;78(4):1396.

    Article  Google Scholar 

  20. Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B. 1994;49(23):16223.

    Article  Google Scholar 

  21. Maruska HP, Tietjen JJ. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett. 1969;15(10):327.

    Article  Google Scholar 

  22. Zheng FL, Zhang JM, Zhang Y, Ji V. First-principles study of the perfect and vacancy defect AlN nanoribbon. Phys B Cond Matter. 2010;405(17):3775.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research of the Ayatollah Alozma Boroujerdi University (No. 92-1012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Beiranvand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beiranvand, R. Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles. Rare Met. 35, 771–778 (2016). https://doi.org/10.1007/s12598-015-0471-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0471-z

Keywords

Navigation