Skip to main content
Log in

The Vanadium Effect on Electronic and Optical Response of MoS2 Graphene-Like: Using DFT

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

First-principle calculations based on the density functional theory (DFT) with the GGA approximation are done to study the electronic and optical properties of MoS2 and MoS2:V graphene-like(GL) cases. In the pure case, the MoS2 GL has the direct energy gap value of 1.7eV. By absorbing the Vanadium (V) impurity to MoS2 GL structure, its electronic property is changed to Half-metallic behavior, and also the energy gap of MoS2:V GL is reduced to 1.6eV amount in up spin. The MoS2 GL absorption is started in the visible area while a small absorption is occurred in the infrared region at x-direction by adding V impurity, and the real and imaginary parts of the dielectric functions claim to have metallic treatment in the mentioned direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neto AHC, Novoselov K (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501

    Article  Google Scholar 

  2. Lashgari H et al (2016) Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl Surf Sci 369:76

    Article  CAS  Google Scholar 

  3. Zhang LZ, Wang ZF, Du SX, Gao HJ, Liu F (2014) Prediction of a Dirac state in monolayer TiB 2. Phys Rev B 288(90):161402

    Article  Google Scholar 

  4. Xie S-Y et al (2014) First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer. Phys Rev B 90:035447

    Article  Google Scholar 

  5. Naseri N, Solaymani S, Ghaderi A, Bramowicz M, Kulesza S, Ţălu Ş, Pourreza M, Ghasemi S (2017) Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro-and nanoscale. RSC Adv 7(21):12923–12930

    Article  CAS  Google Scholar 

  6. Ghodselahi T, Solaymani S, Akbarzadeh Pasha M, Vesaghi MA (2012) Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate. Eur Phys J D 66:299

    Article  Google Scholar 

  7. Dejam L, Mohammad Elahi S, Nazari HH, Elahi H, Solaymani S, Ghaderi A (2016) Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing. J Mater Sci: Mater Electron 27:685–696

    CAS  Google Scholar 

  8. Arman A, Ghodselahi T, Molamohammadi M, Solaymani S, Zahrabi H, Ahmadpourian A (2015) Microstructure and optical properties of Cu@Ni nanoparticles embedded in a-C:H. Prot Met Phys Chem Surf 51(4):575–578

    Article  CAS  Google Scholar 

  9. Sarmazdeh MM et al (2016) First-principles study of optical properties of InN nanosheet. Int J Mod Phys B 30:1650117

    Article  CAS  Google Scholar 

  10. Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two-and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    Article  CAS  Google Scholar 

  11. Zhou XF, Dong X, Oganov AR, Zhu Q, Tian YJ, Wang HT (2014) Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys Rev Lett 112:085502

    Article  Google Scholar 

  12. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS 2 transistors. Nat Nanotechnol 6:147

    Article  CAS  Google Scholar 

  13. Korn T, Heydrich S, Hirmer M, Schnutzler J, Schuller C (2011) Low-temperature photocarrier dynamics in monolayer MoS2. Appl Phys Lett 99:102109

    Article  Google Scholar 

  14. Li H, Zhang G, Wang L (2016) The role of tribo-pairs in modifying the tribological behavior of the MoS2/Ti composite coating. J Phys D Appl Phys 49:095501

    Article  Google Scholar 

  15. Radisavljebic B, Whitwick MB, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147

    Article  Google Scholar 

  16. Gomez AC et al (2012) Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24(6):772

    Article  Google Scholar 

  17. Kara A et al (2012) A review on silicene—New candidate for electronics. Surf Sci Rep 67:1

    Article  CAS  Google Scholar 

  18. Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S (2010) One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res 3:794

    Article  Google Scholar 

  19. Sookhakian M et al (2014) A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells. Thin Solid Films 552:204

    Article  CAS  Google Scholar 

  20. Orouji AA, Rahimfar A, Jozi M (2016) A novel double-gate SOI MOSFET to improve the floating body effect by dual SiGe trench. J Comput Electron 15:537

    Article  CAS  Google Scholar 

  21. Lee HS et al (2012) MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Lett 12:3695

    Article  CAS  Google Scholar 

  22. Han SW et al (2011) Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys Rev B 84:045409

    Article  Google Scholar 

  23. Nagarajan V, Saravanakannan V, Chandiramouli R (2015) Tuning structural stability and electronic properties of MnSe nanostructures – a DFT study. Der Pharma Chemica 7(4):242–248

    CAS  Google Scholar 

  24. Lu S-C, Leburton J-P (2014) Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res Lett 9:676

    Article  Google Scholar 

  25. Blaha P, Schwarz K, Sorantin P, Tricky SB (1990) Full-potential, linearized augmented plane wave programs for crystalline systems. Comput Phys Commun 59:399

    Article  CAS  Google Scholar 

  26. Blaha P, Schwarz K, Madesen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave +local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn Universitaetwien, wien, Austria, Vienna University of Technology Institute of Materials Chemistry Getreidemarkt 9/165-TC A-1060 Vienna, Austria ISBN 3-9501031-1-2

  27. Perdew J, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  28. Kronig RL (1926) On the theory of dispersion of X-Rays. J Opt Soc Am 12:547

    Article  CAS  Google Scholar 

  29. Burns G (1985) Solid State Physics. Academic Press, Inc., New York, pp 339–40. ISBN 0-12-146070-3

    Google Scholar 

  30. Reyes-Retana JA, Naumis GG, Cervantes-Sodi F (2014) Centered Honeycomb NiSe2 Nanoribbons: Structure and Electronic Properties. J Phys Chem C 118:3295

    Article  CAS  Google Scholar 

  31. Fox AM (2001) Optical properties of solids. Oxford University Press, London

    Google Scholar 

  32. Wooten F (1972) Optical properties of solids. Academic Press, New York

    Google Scholar 

  33. Okutsu R, Ando S, Ueda M (2008) Sulfur-Containing Poly(meth)acrylates with High Refractive Indices and High Abbe's Numbers. Chem Mater 20:4017

    Article  CAS  Google Scholar 

  34. Hart SD, Maskaly GR, Temelkuran B, Prideaux PH et al (2002) External reflection from omnidirectional dielectric mirror fibers. Science 196:510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Boochani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boochani, A., Veisi, S. The Vanadium Effect on Electronic and Optical Response of MoS2 Graphene-Like: Using DFT. Silicon 10, 2855–2863 (2018). https://doi.org/10.1007/s12633-018-9825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9825-0

Keywords

Navigation