Skip to main content
Log in

Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Using first-principles approach, we theoretically study the effect of anion/cation vacancies on structural and electro-magnetic properties of zigzag AlN nanoribbons (ZAlNNRs). Calculations were performed using a full spin-polarized method within the density functional theory (DFT). Our findings shed light on how the edge states combined with vacancy engineering can affect electro-magnetic properties of ZAlNNRs. We found that depending on the nature and number of vacancies, ZAlNNRs can design as half-metal or semiconductor. Our results reveal a significant amount of spin magnetic moment for ZAlNNR with Al vacancies (VAl). These results may open new applications of AlN nano-materials in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. žutić, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. D.D. Awschalom, M.E. Flatte, Challenges for semiconductor spintronics. Nat. Phys. 3, 153 (2007)

    Article  Google Scholar 

  3. W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nano. 9, 794 (2014)

    Article  Google Scholar 

  4. H. Idzuchi, Y. Fukuma, Y. Otani, Spin transport in non-magnetic nano-structures induced by non-local spin injection. Physica E. 68, 239 (2015)

    Article  ADS  Google Scholar 

  5. M. Shiraishi, T. Ikoma, Molecular spintronics. Physica E. 43, 1295 (2011)

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306, 666 (2004)

    Article  ADS  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  8. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J. A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  9. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene. Science. 315, 1379 (2007)

    Article  ADS  Google Scholar 

  11. A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Valley filter and valley valve in graphene. Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  12. H. Min, G. Borghi, M. Polini, A.H. MacDonald, Pseudospin magnetism in graphene. Phys. Rev. B. 77, 041407 (2008)

    Article  ADS  Google Scholar 

  13. M. Mecklenburg, B.C. Regan, Spin and the honeycomb lattice: lessons from graphene. Phys. Rev. Lett. 106, 116803 (2011)

    Article  ADS  Google Scholar 

  14. D. Pesin, A.H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409 (2012)

    Article  ADS  Google Scholar 

  15. O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008)

    Article  ADS  Google Scholar 

  16. Z. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Phys. Rev. Lett. 114, 016603 (2015)

    Article  ADS  Google Scholar 

  17. J.B.S. Mendes, O. Alves Santos, L.M. Meireles, R.G. Lac-erda, L.H. Vilela-Leo, F.L.A. Machado, R.L. Rodrguez-Surez, A. Azevedo, S.M. Rezende, Phys. Rev. Lett. 115, 226601 (2015)

    Article  ADS  Google Scholar 

  18. S. Dushenko, H. Ago, K. Kawahara, T. Tsuda, S. Kuwabata, T. Takenobu, T. Shinjo, Y. Ando, M. Shiraishi, Phys. Rev. Lett. 116, 166102 (2016)

    Article  ADS  Google Scholar 

  19. J.H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk. Graphene, Fundamentals and Emergent Applications. Elsevier Science (2012)

  20. F. Schwierz, Graphene transistors: status, prospects, and problems. Proc. IEEE. 101, 1567 (2013)

    Article  Google Scholar 

  21. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Cond. Mat. 406, 2254 (2011)

    Article  ADS  Google Scholar 

  22. J.-W. Jiang, Graphene versus MoS2: a short review. Front. Phys. 10, 287 (2015)

    Article  Google Scholar 

  23. Z.C. Tu, First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. J. Comp. Theo. NanoSci. 7, 1182 (2010)

    Article  Google Scholar 

  24. M. Houssa, G. Pourtois, V.V. Afanasév, A. Stesmans, Can silicon behave like graphene? A first-principles study. App. Phys. Lett. 97, 112106 (2010)

    Article  ADS  Google Scholar 

  25. Y. Li, Z. Yang, Z. Chen, Z. Zhou, Computational investigation on structural and physical properties of AlN nanosheets and nanoribbons. J. Nanosci. Nanotechnol. 10, 7200 (2010)

    Article  Google Scholar 

  26. H. Zhang, Y. Li, Q. Tang, L. Liu, Z Zhou, First-principles studies on structural and electronic properties of GaN–AlN heterostructure nanowires. Nanoscale. 4, 1078 (2012)

    Article  ADS  Google Scholar 

  27. R. Beiranvand, S. Valedbagi, Electronic and optical properties of h-BN nanosheet: a first-principles calculation. Diam. Rel. Mater. 58, 190 (2015)

    Article  Google Scholar 

  28. R. Beiranvand, S. Valedbagi, Electronic and optical properties of advance semiconductor materials: BN, AlN and GaN nanosheets from first-principles. Optik. 127, 1553 (2016)

    Article  ADS  Google Scholar 

  29. P. Ruterana, M. Albrecht, J. Neugebauer, Nitride Semiconductors: Handbook on Materials and Devices. Wiley (2006)

  30. M. Dadsetani, R. Beiranvand, First principles study of the optical properties of alkaline-earth metal nitrides. Comp. Mater. Sci. 49, 400 (2010)

    Article  Google Scholar 

  31. O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D: App. Phys. 31, 2653 (1998)

    Article  ADS  Google Scholar 

  32. P. Dev, Y. Xue, P. Zhang, Defect-induced intrinsic magnetism in wide-gap III nitrides. Phys. Rev. Lett. 100, 117204 (2008)

    Article  ADS  Google Scholar 

  33. N. Saidi-Houat, A. Zaoui, A. Belabbes, M. Ferhat, Ab initio study of the fundamental properties of novel III–V nitride alloys Ga1x TlxN. Mater. Sci. Eng. B. 162, 26 (2009)

    Article  Google Scholar 

  34. J.L.P Castineira, J.R Leite, L.M.R Scolfaro, R. Enderlein, J.L.A Alves, H.W Leite Alves, First principles studies of point defects and impurities in cubic boron nitride. Mater. Sci. Eng. B. 51, 53 (1998)

    Article  Google Scholar 

  35. Z. Deng, Z. Li, W. Wang, Electron affinity and ionization potential of two-dimensional honeycomb sheets: a first-principle study. Chem. Phys. Lett. 637, 26 (2015)

    Article  ADS  Google Scholar 

  36. R.R.Q. Freitas, G.K. Gueorguiev, F. de Brito Mota, C.M.C. de Castilho, S. Stafström, A. Kakanakova-Georgieva, Reactivity of adducts relevant to the deposition of hexagonal BN from first-principles calculations. Chem. Phys. Lett. 583, 119 (2013)

  37. V.V. Ilyasov, B.C. Meshi, V.C. Nguyen, I.V. Ershov, D.C. Nguyen, Magnetism and transport properties of zigzag graphene nanoribbons/hexagonal boron nitride heterostructures. J. App. Phys. 115, 053708 (2014)

    Article  ADS  Google Scholar 

  38. V. Barone, J.E. Peralta, Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 8, 2210 (2008)

    Article  ADS  Google Scholar 

  39. T.M. Schmidt, R.J. Baierle, P. Piquini, A. Fazzio, Theoretical study of native defects in BN nanotubes. Phys. Rev. B. 67, 113407 (2003)

    Article  ADS  Google Scholar 

  40. Z. Liu, J. Ni, Magnetism induced by nonmagnetic dopants in zinc-blende SiC: first-principle calculations. Sci. China Phys. Mech. Astron. 53, 1 (2010)

    Article  ADS  Google Scholar 

  41. R. Beiranvand, Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first-principles. Rare Met. 35, 771 (2016)

    Article  Google Scholar 

  42. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  43. K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comp. Phys. Commun. 147, 71 (2002)

    Article  ADS  MATH  Google Scholar 

  44. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B. 49, 16223 (1994)

    Article  ADS  Google Scholar 

  45. T. Enoki, S. Fujii, K. Takai, Zigzag and armchair edges in graphene. Carbon. 50, 3141 (2012)

    Article  Google Scholar 

  46. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954 (1996)

    Article  ADS  Google Scholar 

  47. A.J. Du, S.C. Smith, G.Q. Lu, First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon. Chem. Phys. Lett. 447, 181 (2007)

    Article  ADS  Google Scholar 

  48. A. Rubio, J.L. Corkill, M.L. Cohen, E.L. Shirley, S.G. Louie, Quasiparticle band structure of AlN and GaN. Phys. Rev. B. 48, 11810 (1993)

    Article  ADS  Google Scholar 

  49. Y.-L. Song, D.-B. Lu, B.-L. Cui, J.-M. Zhang, Electronic structures of the F-terminated AlN nanoribbons. Pramana. 78, 469 (2012)

    Article  ADS  Google Scholar 

  50. S. Valedbagi, A. Fathalian, S. Mohammad Elahi, Electronic and optical properties of AlN nanosheet: an ab initio study. Opt. Commun. 309(153), 153–157 (2013)

    Article  ADS  Google Scholar 

  51. C.-w Zhang, First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J. App. Phys. 111, 043702 (2012)

    Article  ADS  Google Scholar 

  52. F.-L. Zheng, J.-M. Zhang, Y. Zhang, V. Ji, First-principles study of the perfect and vacancy defect AlN nanoribbon. Physica B: Cond. Matter. 405, 3775–3781 (2010)

    Article  ADS  Google Scholar 

  53. Q. Chen, R. Song, C. Chen, X. Chen, Tunable band gap of AlN, GaN nanoribbons and AlN/GaN nanoribbon heterojunctions: a first-principle study. Sol. Sta. Commun. 172, 24 (2013)

    Article  ADS  Google Scholar 

  54. Y. Dai, X. Chen, C. Jiang, Electronic structures of zigzag AlN, GaN nanoribbons and AlxGa1xN nanoribbon heterojunctions: first-principles study. Physica B: Cond. Matt. 407, 515 (2012)

    Article  ADS  Google Scholar 

  55. A.J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu, S.C. Smith, First principle studies of zigzag AlN nanoribbon. Chem. Phys. Lett. 469, 183 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of research of the Ayatollah Boroujerdi University (No. 93-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Chegeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chegeni, M., Beiranvand, R. & Valedbagi, S. Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction. Braz J Phys 47, 137–144 (2017). https://doi.org/10.1007/s13538-016-0480-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0480-x

Keywords

Navigation