Skip to main content
Log in

Insect cell culture as a tool in plant virus research: a historical overview

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Culturing insect cells in vitro has witnessed remarkable growth in the past decades. Over 600 cell lines of dipteran, hemipteran, and lepidopteran insects have been reported so far. Besides its wide adoption for the production of recombinant proteins, viral pesticides, and vaccines, insect cell culture is increasingly being used as a tool for basic research in genetics, molecular biology, biochemistry, and virology. Since its first application in plant virus studies in 1956, insect cell culture has become an indispensable tool to study the complex and intimate interactions of plant viruses and their insect vectors. The in vitro cell cultures of several insect vectors of plant viruses including leafhoppers, planthoppers, aphids, thrips, and whiteflies have been successfully employed to understand the functions of viral proteins and receptor-mediated endocytosis into vector cells. This review summarizes the development of novel media and insect cell culture systems and their applications in plant virus research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

Similar content being viewed by others

References

  • Adam, G. (1984). Plant virus studies in insect vector cell culture. In M. A. Mayo & K. A. Harrap (Eds.), Vectors in virus biology (pp. 37–62). London: Academic Press.

    Google Scholar 

  • Adam, G., & Sander, E. (1976). Isolation and culture of aphid cells for the assay of insect-transmitted plant viruses. Virology, 70(2), 502–508.

    Article  CAS  PubMed  Google Scholar 

  • Ammar, E. D., & Nault, L. R. (2002). Virus transmission by leafhoppers, planthoppers and treehoppers (Auchenorrhyncha, Homoptera). Advances in Botanical Research, 36, 141–167.

    Article  Google Scholar 

  • Baines, D. (1996). New approaches to insect tissue culture. Cytotechnology, 20(1–3), 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Bell-Sakyi, L., Zweygarth, E., Blouin, E. F., & Gould, E. A. (2007). Tick cell lines: Tools for tick and tick-borne disease research. Trends in Parasitology, 23, 450–457.

    Article  CAS  PubMed  Google Scholar 

  • Black, L. M. (1969). Insect tissue cultures as tools in plant virus research. Annual Review of Phytopathology, 7, 73–100.

    Article  Google Scholar 

  • Black, L. M. (1979). Vector cell monolayers and plant viruses. Advances in Virus Research, 25, 191–271.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, J. W., Chevignon, G., Oliver, K. M., & Strand, M. R. (2017). Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proceedings of the Royal Society B, 284, 20171925.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen, Q., Chen, H., Mao, Q., Liu, Q., Shimizu, T., & Uehara, T. (2012). Tubular structure induced by a plant virus facilitates viral spread in its vector insect. PLoS Pathogen, 8, e1003032.

    Article  CAS  Google Scholar 

  • Chen, H., Zheng, L., Jia, D., Zhang, P., Chen, Q., Liu, Q., & Wei, T. (2013). Rice gall dwarf virus exploits tubules to facilitate viral spread among cultured insect vector cells derived from leafhopper Recilia dorsalis. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2013.00206.

  • Chen, H., Zheng, H., Mao, Q., Liu, Q., Jia, D., & Wei, T. (2014). Development of continuous cell culture of brown planthopper to trace the early infection process of oryzaviruses in insect vector. Journal of Virology, 88(8), 4265–4274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiu, R. J., & Black, L. M. (1967). Monolayer cultures of insect cell lines and their inoculation with a plant virus. Nature, 215, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  • Chiu, R. J., Reddy, D. V. R., & Black, L. M. (1966). Inoculation and infection of leafhopper tissue cultures with a plant virus. Virology, 30(5), 62–66.

    Google Scholar 

  • Chiu, R. J., Liu, H. Y., MacLeod, R., & Black, L. M. (1970). Potato yellow dwarf virus in leafhopper cell culture. Virology, 409(2), 387–396.

    Article  Google Scholar 

  • Chiykowski, L. N. (1980). Epidemiology of diseases caused by leafhopper-borne pathogens in plant disease and vectors (edited by K. Maramorosch and K. F. Harris) (pp. 106–159). New York: Academic press.

    Google Scholar 

  • Creamer, R. (1993). Invertebrate tissue culture as a tool to study insect transmission of plant viruses. In Vitro Cellular & Developmental Biology, 29A, 284–288.

    Article  Google Scholar 

  • Day, M. F., & Grace, T. D. C. (1959). Culture of insect tissues. Annual Review of Entomology, 4, 17–38.

    Article  CAS  Google Scholar 

  • Deshpande, T. M., Vasekar, S. D., & Chaphalkar, S. R. (2014). Preliminary report on development of sugarcane woolly aphid (Ceratovacuna lanigera) cell cultures. International Journal of Institutional Pharmacy and Life Sciences, 4(5), 2249–6807.

    Google Scholar 

  • Duffus, J. E. (1963). Possible multiplication in the aphid vector of sowthistle yellow vein virus, a virus with an extremely long insect latent period. Virology, 21, 194–202.

    Article  Google Scholar 

  • Gamez, R., & Black, L. M. (1967). Application of particle counting to a leafhopper borne virus. Nature, 215, 173–174.

    Article  CAS  PubMed  Google Scholar 

  • Gamez, R., & Black, L. M. (1968). Particle counts of wound-tumor virus during its peak concentration in leafhoppers. Virology, 34, 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Gamez, R., & Chiu, R. J. (1968). The minimum concentration of a plant virus needed for infection of monolayers of vector cells. Virology, 34, 356–357.

    Article  CAS  PubMed  Google Scholar 

  • Gaw, Z., Liv, N. T., & Zia, T. U. (1959). Tissue culture method for cultivation of grasserie. Acta Virologica, 3(suppl), 55–60.

    PubMed  Google Scholar 

  • Ghosh, A., Chatterjee, M. L., Chakraborti, K., & Samanta, A. (2009). Field evaluation of insecticides against chilli thrips (Scirtothrips dorsalis Hood). Annals of Plant Protection Sciences, 17, 69–71.

    Google Scholar 

  • Ghosh, A., Chakrabarti, S., Mandal, B., & Krishna Kumar, N. K. (2017a). Aphids as vectors of the plant viruses in India. In B. Mandal, G. Rao, V. Baranwal, & R. Jain (Eds.), A century of plant virology in India (pp. 515–536). Singapore: Springer.

    Chapter  Google Scholar 

  • Ghosh, A., Dey, D., Timmanna, B., Mandal, B., & Jain, R. K. (2017b). Thrips as the vectors of Tospoviruses in Indian agriculture. In B. Mandal, G. Rao, V. Baranwal, & R. Jain (Eds.), A century of plant virology in India (pp. 537–561). Singapore: Springer.

    Chapter  Google Scholar 

  • Ghosh, A., Basavaraj, Y. B., Jangra, S., & Das, A. (2019). Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, Thrips palmi (Thysanoptera: Thripidae). Archives of Virology, 164(11), 2799–2804.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, A., Jagdale, S., Basavaraj, D. R. G., & Jain, R. K. (2020). Genetics of Thrips palmi (Thysanoptera: Thripidae). Journal of Pest Science. https://doi.org/10.1007/s10340-019-01160.

  • Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology, 2, 67–93.

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt, R. (1915). Some experiments on spermatogenesis in vitro. PNAS, 1, 220–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman, C. L., Ringbauer, J. A., Li, Y. F., Lincoln, T. R., & Stanley, D. (2017). In. In Vitro Cellular & Developmental Biology Animal, 53(5), 417–420.

    Article  CAS  Google Scholar 

  • Grace, T. D. C. (1958). Effects of various substances on growth of silkworm tissues in vitro. Australian Journal of Biological Sciences, 11, 407417.

    Article  Google Scholar 

  • Grace, D. C. (1962). Establishment of four strains of cells from insect tissues grown in vitro. Nature, land, 195, 788–798.

    Article  CAS  Google Scholar 

  • Harris, K. F. (1981). Arthropod and nematode vectors of plant viruses. Annual Review of Phytopathology, 19, 391–426.

    Article  Google Scholar 

  • Hinde, R. (1971). Maintenance of aphid cells and the intracellular symbiotes of aphids in vitro. Journal of Invertebrate Pathology, 17, 333–338.

    Article  Google Scholar 

  • Hink, W. F., & Ellis, B. J. (1971). Establishment and characterization of two new cell lines (CP-1268 and CP-169) from the codling moth,Carpocapsa pomonella. Current Topics in Microbiology and Immunology, 55, 19–28.

    CAS  PubMed  Google Scholar 

  • Hirumi, H., & Maramorosch, K. (1964a). Insect tissue culture: Use of blastokinetic stage of leafhopper embryo. Science, 144, 1465–1467.

    Article  CAS  PubMed  Google Scholar 

  • Hirumi, R., & Maramorosch, K. (1964b). Insect tissue culture: Further studies on the cultivation of embryonic leafhopper tissues in vitro. Contributions from Boyce Thompson Institute, 22, 343–352.

    Google Scholar 

  • Hsu, J. T., Nuss, D. L., & Adam, G. (1983). Utilization of insect tissue culture in the study of the molecular biology of plant viruses. Current Topics in Vector Research, 1, 189–214.

    Google Scholar 

  • Hunter, W. B., & Hsu, H. T. (1995). Establishing thrips cell cultures to study tospoviruses. In B. L. Parker, M. Skinner, & T. Lewis (Eds.), Thrips biology and management (pp. 163–166). New York: Plenum Press.

    Chapter  Google Scholar 

  • Hunter, W. B., & Hsu, H. T. (1996). Formulation of an insect medium for thrips monolayer cell cultures (Thysanoptera: Thripidae: frankliniella occidentalis). Journal of Invertebrate Pathology, 67, 125–128.

    Article  Google Scholar 

  • Hunter, W. B., & Polston, J. E. (2001). Development of a continuous whitefly cell line [Homoptera: Aleyrodidae: Bemisia tabaci (Gennadius)] for the study of begomovirus. Journal of Invertebrate Pathology, 77, 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Jagdale, S. S., & Ghosh, A. (2019). In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi. Virus Disease, 30, 245–251. https://doi.org/10.1007/s13337-019-00521-w.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jangra, S., Mittal, A., Dhall, H., Jain, R. K., & Ghosh, A. (2020). A multiplex PCR assay for rapid identification of major tospovirus vectors reported in India. BMC Genomics, 21(1), 170. https://doi.org/10.1186/s12864-020-6560-x.

  • Jia, D., Chen, H., Zhenga, C. Q., Liu, Q., Xie, L., Wu, Z., & Wei, T. (2012). Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein. Journal of Virology, 86, 5800–5807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamita, S. G., Do, Z. N., Samra, A. I., Hagler, J. R., & Hammock, B. D. (2005). Characterization of cell lines developed from the glassy-winged sharp shooter, Homalodisca coagulate (Hemiptera: Cicadellidae). In Vitro Cellular & Developmental Biology. Animal, 41, 149–153.

    Article  CAS  Google Scholar 

  • Kimura, I. (1984). Establishment of new cell lines from leafhopper vector and inoculation of its cell monolayers with rice dwarf virus. Proceedings Japan Academy, 69(b), 198–201.

    Article  Google Scholar 

  • Kimura, I. (1986). A study of Rice dwarf virus in vector cell monolayers by fluorescent antibody focus counting. The Journal of General Virology, 67, 2119–2124.

    Article  Google Scholar 

  • Kimura, I. (1989). Monolayer cell culture of leafhopper vectors, and their inoculation with a rice virus. In J. Mitsuhashi (Ed.), Invertebrate cell system application (Vol. 2, pp. 109–115). Boca Raton: CRC press, Inc..

    Google Scholar 

  • Kimura, I., & Omura, T. (1988). Leafhopper cell cultures as a means for phytoreovirus research. Adv Dis Vector Res, 5, 111–135.

    Google Scholar 

  • Kirk, W. D. J., & Terry, L. I. (2003). The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology, 5, 301–310.

    Article  Google Scholar 

  • Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q., & Wei, T. (2016). Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Scientific Reports, 6, 20699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibovitz, A. (1963). The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere. American Journal of Hygiene, 78, 173.

    CAS  PubMed  Google Scholar 

  • Liu, H. Y., & Black, L. M. (1976). Improvements in establishing and growing leafhopper cell cultures. Proceedings of American Phytopathological Society, 3, 234.

    Google Scholar 

  • Lynn, D. (2001). Novel techniques to establish new insect cell lines. In Vitro Cellular & Developmental Biology Animal, 37(6), 319–321.

    Article  CAS  Google Scholar 

  • Ma, Y., Wu, W., Chen, H., Jia, D., Mao, Q., Chen, Q., Wu, Z., & Wei, T. (2013). An insect cell line derived from the small brown planthopper supports replication of rice stripe virus a tenuivirus. The Journal of General Virology, 94, 1421–1425.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Q., Zheng, S., Han, Q., Chen, H., Ma, Y., Jia, D., Chen, Q., & Wei, T. (2013). New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells. Journal of Virology, 87, 6819–6828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maramorosch, K. (1956). Multiplication of aster yellows virus in in vitro preparation of insect tissues. Virology, 2, 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Maramorosch, K. (1976). Plant pathology application. In K. Maramorosch (Ed.), Invertebrate tissue culture. Research application (pp. 305–315). Academic press: London.

    Chapter  Google Scholar 

  • Maramorosch, K., Mitsuhashi, J., Streissle, G., & Hirumi, H. (1965). Animal and plant viruses in insect tissue in vitro. Bacteriological Proceedings, 120.

  • Mitsuhashi, J. (1965). Preliminary report on the plant virus multiplication in the leafhopper vector cells grown in vitro. Japanese Journal of Applied Entomology and Zoology, 9, 137–141.

    Article  Google Scholar 

  • Mitsuhashi, J. (1972). Use of invertebrate cell culture for the study of plant viruses. In C. Vago (Ed.), Invertebrate tissue culture (Vol. 2, pp. 343–360). London: Academic Press.

    Chapter  Google Scholar 

  • Mitsuhashi, J. (1989). Invertebrate cell system applications (Vol. ii). Boca Raton: CRC press.

    Google Scholar 

  • Mitsuhashi, J. (2001). Development of highly nutritive culture media. In Vitro Cellular & Developmental Biology. Animal, 37, 330–337.

    Article  CAS  Google Scholar 

  • Mitsuhashi, J., & Maramorosch, K. (1964a). Leafhopper tissue culture: Embryonic, nymphal, and imaginal tissues from aseptic insects. Contributions from Boyce Thompson Institute, 22, 435–460.

    Google Scholar 

  • Mitsuhashi, J., & Maramorosch, K. (1964b). Inoculation of plant tissue cultures with aster yellows virus. Virology, 23, 277–279.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi, J., & Nasu, S. (1967). An evidence for the multiplication of rice dwarf virus in the vector cell cultures inoculated in vitro. Japanese Journal of Applied Entomology and Zoology, 2(1), 13–14.

    Article  Google Scholar 

  • Mochida, O., Wahyu, A., Surjani, T. (1979) Some considerations on screening resistant cultivars/lines of rice plant to the brown planthopper. Nilparvata lugens (stål), (Hom, Delphacidae), IRRI, 1.

  • Nagata, T., Storms, M. M. H., Goldbach, R., & Peters, D. (1997). Multiplication of tomato spotted wilt virus in primary cell cultures derived from two thrips species. Virus Research, 49, 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Omura, T., Hibino, H., Usugi, T., Inoue, H., Morinaka, T., Tsurumachi, S., Ong, C. A., Putta, M., Tsuchizaki, T., & Saito, Y. (1984). Detection of rice viruses in plants and individual insect vectors by latex flocculation test. Plant Disease, 68, 374–378.

    Article  Google Scholar 

  • Omura, T., Kimura, I., Tsuchizaki, T., & Saito, Y. (1988). Infection by rice gall dwarf virus of cultured monolayers of leafhopper cells. The Journal of General Virology, 69, 429–432.

    Article  Google Scholar 

  • Omura, T., Yan, J., Zhong, B., Wada, M., Zhu, Y., Tomaru, M., Maruyama W., Kikuchi A., Watanabe, Y., Kimura, I., Hibino, H. (1998). The P2 protein of rice dwarf phytoreovirus is required for adsorption of the virus to cells of the insect vector. Journal of Virology, 72(11), 9370–9373.

  • Pakkianathan, B. C., Kontsedalov, S., Lebedev, G., Mahadav, A., Zeidan, M., Czosnek, H., & Ghanim, M. (2015). Replication of tomato yellow leaf curl virus in its whitefly vector Bemisia tabaci. Journal of Virology, 89, 9791–9803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomares, L. A., & Ramirez, O. T. (1996). The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology, 22, 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Palomares, L. A., Srivastava, I. K., Ramírez, O. T., & Cox, M. M. J. (2018). Glycobiotechnology of the insect cell-Baculovirus expression system technology. Advances in Biochemical Engineering/Biotechnology. https://doi.org/10.1007/10_2018_61.

  • Pannabeckert, L., Andrews, F., & Beyenbachk, W. A. (1992). Quantitative analysis of the osmolytes in the hemolymph of the larval gypsy moth, Lymantria dispar. Journal of Insect Physiology, 38, 823–930.

    Article  Google Scholar 

  • Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141, 219–236.

    Article  CAS  PubMed  Google Scholar 

  • Peter, D., & Black, L. M. (1970). Infection of primary cultures of aphid cells with a plant virus. Virology, 40, 847–853.

    Article  Google Scholar 

  • Rathgeber, J., Adam, G., & Mundry, K. W. (1989). Protein synthesis in vector cell monolayers after infection with potato yellow dwarf virus. In J. Mitsuhashi (Ed.), Invertebrate cell system applications (Vol. 2, pp. 99–108). Boca Raton: CRC Press, Inc..

    Google Scholar 

  • Reddy, D. V. R., & Black, L. M. (1966). Production of wound-tumor virus and wound-tumor soluble antigen in the insect vector. Virology, 30(5), 51–61.

    Google Scholar 

  • Reddy, D. V. R., & Black, L. M. (1972). Increase of wound tumor virus in leafhoppers as assayed on vector cell monolayers. Virology, 50, 412–421.

    Article  CAS  PubMed  Google Scholar 

  • Rotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89.

    Article  PubMed  Google Scholar 

  • Saxena, R., & Khan, Z. (1989). Factors affecting resistance of rice varieties to planthopper and leafhopper pests. Agricultural Zoology Reviews, 3, 97–132.

    Google Scholar 

  • Schlaeger, E. J., Loetscher, H., & Gentz, R. (1992). Fermentation scale up: production of soluble human tnf receptors. In: J. M. Vlak, E. J. Schlaeger, A. R. Bernard (Eds.), Workshop on baculovirus and recombinant protein production processes (p. 201). Interlaken, Switzerland.

  • Schmidt, E. L., & Williams, C. M. (1953).Physiology of insect diapause. V. Assay of the growth and differentiation hormone of Lepidoptera by the method of tissue culture. The Biological Bulletin, 105, 174–187.

  • Schneider, L. (1964). Differentiation of larval drosophila eye-antennal discs in vitro. The Journal of Experimental Zoology, 156, 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Sharman, M., Thomas, J. E., Tree, D., & Persley, D. M. (2019). Natural host range and thrips transmission of capsicum chlorosis virus in Australia. Australasian Plant Pathology, 49, 45–51. https://doi.org/10.1007/s13313-019-00675-7.

    Article  CAS  Google Scholar 

  • Shields, G., & Sang, J. H. (1977). Improved medium for culture of Drosophila embryonic cells. Drosophila Information Service, 52, 161.

    Google Scholar 

  • Shikata, E., Yamada, K., & Tokumiusu, T. (1970). Embryonic tissue cultures of planthopper and leafhopper vectors of plant pathogenic viruses. Journal of the Faculty of Agriculture, Hokkaido University, Sapporo, 56, 292–302.

    Google Scholar 

  • Sinha, R. C. (1965). Sequential infection and distribution of wound-tumor virus in the internal organs of a vector after ingestion of virus. Virology, 26, 673–686.

    Article  CAS  PubMed  Google Scholar 

  • Smagghe, G., Goodman, C. L., & Stanley, D. (2009). Insect cell culture and application to research and pest management. In Vitro Cellular & Developmental Biology, 45, 93–105.

    Article  Google Scholar 

  • Sohi, S. S. (1980). Invertebrate systems in vitro. In: Kurstak E, Maramorosch K, Dubendorfer a (eds.) Elsevier/ North-Holland biomedical press, 35-43.

  • Sylvester, E. S., & Richardson, J. (1969). Additional evidence of multiplication of the sowthistle yellow vein virus in an aphid vector-serial passage. Virology, 37, 26–31.

    Article  CAS  PubMed  Google Scholar 

  • Tokumitsu, K., & Maramorosch, K. (1966). Survival of aphid cells in vitro. Experimental Cell Research, 44, 652–655.

    Article  CAS  PubMed  Google Scholar 

  • Turina, M., Kormelink, R., & Resende, R. O. (2016). Resistance to tospoviruses in vegetable crops: Epidemiological and molecular aspects. Annual Review of Phytopathology, 54, 347–371.

    Article  CAS  PubMed  Google Scholar 

  • Vago, C., & Chastang, S. (1958). Obtention de lignees cellularies en culture de tissue d’invertebrates. Erperientia, 14, 110–113.

    Article  CAS  Google Scholar 

  • Van Oers, M. M., & Lynn, D. E. (2010). Insect cell culture. In Encyclopedia of life sciences (els). Chichester: John Wiley & Sons ltd..

    Google Scholar 

  • Vaughn, J. L. (1985). Insect tissue culture: techniques and development. Techniques in the life sciences, setting up and maintenance of tissue and cell culture, 108, 1–35.

    Google Scholar 

  • Walker, A. K. (1994). A review of the pest status and natural enemies of Thrips palmi. Biocontrol News and Information, 15(1), 7–10.

    Google Scholar 

  • Wang, M. Y., Kwong, S., & Bentley, W. E. (1993). Effects of oxygen/ glucose/ glutamine feeding on insect cell baculovirus protein expression- a study on epoxide hydrolase production. Biotechnology Progress, 9, 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Wang, J., Xie, Y., Fu, Z., Wei, T., & Zhang, X. (2018). Developmentof leafhopper cell culture to trace the early infection process of a nucleorhabdovirus, rice yellow stunt virus, in insect vector cells. Virology Journal, 15, 72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wayadande, A. C., & Fletcher, J. (1998). Development and use of an established cell line of the leafhopper circulifer tenellus to characterize Spiroplasma citri–vector interactions. Journal of Invertebrate Pathology, 72, 126–131.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Shimizu, T., Hagiwara, K., Kikuchi, A., Moriyasu, Y., Suzuki, N., Chen, H., & Omura, T. (2006a). Pns 12 protein of rice dwarf virus is essential for formation of virolplasms and nucleation of viral assembly complexes. The Journal of General Virology, 87, 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Kikuchi, A., Moriyasu, Y., Suzuki, N., Shimizu, T., Hagiwara, K., Chen, H., Takahashi, M., Uehera, T., Omura, T. (2006b). The spread of rice dwarf virus among cells of its insect vector exploits virus induced tubular structures. The Journal of General Virology, 8593–8602.

  • Wei, T., Chen, H., Uehara, T., Hibino, H., Omura, T. (2007). Entry of rice dwarf virus into cultured cells of its insect vector involves clatherin mediated endocytosis. Journal of Virology, 7811-7815.

  • Wei, T., Shimizu, T., & Omura, T. (2008). Endomembranes and myosin mediate assembly into tubules of Pns10 of Rice dwarf virus and intercellular spreading of the virus in cultured insect vector cells. Virology, 372, 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Uehara, T., Miyazaki N., Hibino, H., Iwasaki K., Omura, T. (2009). Association of rice gall dwarf virus with microtubules is necessary for viral release from cultured insect vector cells. Journal of Virology, 10830-10835.

  • Wei, T., Miyazaki, N., Uehara, T., Hibino, H., Shimizu, T., & Netsu, O. (2011). Three-dimensional analysis of the association of viral particles with mitochondria during the replication of Rice gall dwarf virus. Journal of Molecular Biology, 410, 436–446.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, A. E., Kumar, N. K., Rotenberg, D., Ullman, D. E., Wyman, E. A., Zietlow, C., Willis, D. K., & German, T. L. (2008). A soluble form of the tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology, 98(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt, S. S. (1956). Culture in vitro of tissue from the silkworm Bombyx mori. Gen Physiol, 39, 841–852.

    Article  CAS  Google Scholar 

  • Xu, Y., Yolanda, Chen, Y. H., & Yu, X. (2014). Cell culture of the rice brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). In Vitro Cellular & Developmental Biology Animal, 50, 384–388.

    Article  Google Scholar 

  • Yan, J., Tomaru, M., Takahashi, A., Kimura, K., Hibino, H., & Omura, T. (1996). P2 protein encoded by genome segment S2 of rice dwarf phytoreovirus is essential for virus infection. Virology, 224, 539–541.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support received from Indian Agricultural Research Institute, DBT (BT/PR26136/AGIII/103/1005/2018), and SERB (EMR/2017/000590) is thankfully acknowledged. This research was also jointly supported by the Queensland Department of Agriculture and Fisheries and the University of Queensland through the Queensland Alliance for Agriculture and Food Innovation.

Author contribution statement

AG conceived and designed the review. HD and AG read through the related publications and wrote the draft manuscript. RKJ, RGD critically reviewed the manuscript and suggested edits; RGD assisted with English language editing. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Ghosh.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest regarding the review reported in this paper.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Dhall, H., Dietzgen, R.G. et al. Insect cell culture as a tool in plant virus research: a historical overview. Phytoparasitica 48, 287–303 (2020). https://doi.org/10.1007/s12600-020-00795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00795-7

Keywords

Navigation