Skip to main content
Log in

Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, Thrips palmi (Thysanoptera: Thripidae)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Thrips palmi transmits the tospoviruses watermelon bud necrosis (WBNV) and groundnut bud necrosis virus (GBNV) in persistent propagative way. Little is known about the T. palmi-WBNV and -GBNV relationship. In this study, we report the effects of WBNV and GBNV infection on the life history traits of T. palmi. Both WBNV and GBNV had some negative effects on the adult life span, fecundity and survival of T. palmi as compared to non-exposed T. palmi. Tospovirus exposure favoured a female-biased ratio in the experimental population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Turina M, Kormelink R, Resende RO (2016) Resistance to tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol 54:347–371. https://doi.org/10.1146/annurev-phyto-080615-095843

    Article  CAS  PubMed  Google Scholar 

  2. Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res 141:219–236. https://doi.org/10.1016/j.virusres.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh A, Dey D, Timmanna et al (2017) Thrips as the vectors of tospoviruses in Indian agriculture. In: Mandal B et al (eds) A century of plant virology in India. Springer Singapore, Singapore, pp 537–561

    Chapter  Google Scholar 

  4. Jagdale SS, Ghosh A (2019) In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi. VirusDisease 30:245–251. https://doi.org/10.1007/s13337-019-00521-w

    Article  PubMed  Google Scholar 

  5. Robb KL (1989) Analysis of Frankliniella occidentalis (Pergande) as a pest of loricultural crops in California greenhouses. University of California

  6. Deangelis JD, Sether DM, Rossignol PA (1993) Survival, development, and reproduction in western flower Thrips (Thysanoptera: Thripidae) exposed to impatiens necrotic spot virus. Environ Entomol 22:1308–1312. https://doi.org/10.1093/ee/22.6.1308

    Article  Google Scholar 

  7. Wijkamp I, Goldbach R, Peters D (1996) Propagation of tomato spotted wilt virus in Frankliniella occidentalis does neither result in pathological effects nor in transovarial passage of the virus. Entomol Exp Appl 81:285–292. https://doi.org/10.1046/j.1570-7458.1996.00098.x

    Article  Google Scholar 

  8. Belliure B, Janssen A, Sabelis MW (2008) Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation. Oecologia 156:797–806. https://doi.org/10.1007/s00442-008-1027-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shrestha A, Srinivasan R, Riley DG, Culbreath AK (2012) Direct and indirect effects of a thrips-transmitted Tospovirus on the preference and fitness of its vector, Frankliniella fusca. Entomol Exp Appl 145:260–271. https://doi.org/10.1111/eea.12011

    Article  CAS  Google Scholar 

  10. Reddy DVR, Buiel AAM, Satyanarayana T, Dwivedi SL, Reddy AS, et al (1995) Peanut bud necrosis disease: an overview. In: Buiel AAM, Parevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease: proceedings of a meeting, 20 March. International Crop Research Institute for Semi-Arid Tropics, Patancheru, Andhra Pradesh, India. pp 3–7

  11. Singh AB, Srivastava S (1995) Status and control strategy of peanut bud necrosis disease in Uttar Pradesh. In: Buiel AAM, Parlevliet JE, Lenne J (eds) Recent studies on peanut bud necrosis disease. ICRISAT Asia Centre, Hyderabad, pp 65–68

    Google Scholar 

  12. Singh RB, Srivastava KK, Khurana SMP, Pandey SK, Khurana S (1997) Assessment of yield losses due to potato stem necrosis disease. Indian J Virol 13:135–137

    Google Scholar 

  13. Daimei G, Raina HS, Devi PP et al (2017) Influence of Groundnut bud necrosis virus on the life history traits and feeding preference of its vector, Thrips palmi. Phytopathology 107:1440–1445. https://doi.org/10.1094/PHYTO-08-16-0296-R

    Article  PubMed  Google Scholar 

  14. Meena RL, Ramasubram T, Venkatesan S et al (2005) Molecular characterization of tospovirus transmitting Thrips populations from India. Am J Biochem Biotechnol 1:167–172. https://doi.org/10.3844/ajbbsp.2005.167.172

    Article  CAS  Google Scholar 

  15. Lakshmi KV, Wightman JA, Reddy DVR et al (1995) Transmission of peanut bud necrosis virus by Thrips palmi in India. In: Parker BL et al (eds) Thrips biology and management. Springer, US, Boston, pp 179–184

    Chapter  Google Scholar 

  16. Ghosh A, Das A, Vijayanandraj S, Mandal B (2016) Cardamom bushy dwarf virus infection in large cardamom alters plant selection preference, life stages, and fecundity of aphid vector, Micromyzus kalimpongensis (Hemiptera: Aphididae). Environ Entomol 45:178–184. https://doi.org/10.1093/ee/nvv161

    Article  PubMed  Google Scholar 

  17. Saritha RK, Jain RK (2007) Nucleotide sequence of the S and M RNA segments of a Groundnut bud necrosis virus isolate from Vigna radiata in India. Arch Virol 152:1195–1200. https://doi.org/10.1007/s00705-007-0949-6

    Article  CAS  PubMed  Google Scholar 

  18. Holkar SK, Kumar R, Yogita M et al (2017) Diagnostic assays for two closely related tospovirus species, Watermelon bud necrosis virus and Groundnut bud necrosis virus and identification of new natural hosts. J Plant Biochem Biotechnol 26:43–51. https://doi.org/10.1007/s13562-016-0358-6

    Article  CAS  Google Scholar 

  19. Sylvester ES (1973) Reduction of excretion, reproduction, and survival in Hyperomyzus lactucae fed on plants infected with isolates of sowthistle yellow vein virus. Virology 56:632–635. https://doi.org/10.1016/0042-6822(73)90064-0

    Article  CAS  PubMed  Google Scholar 

  20. Nault LR (1994) Transmission biology, vector specificity and evolution of planthopper-transmitted plant viruses. Planthoppers. Springer, US, Boston, MA, pp 429–448

    Chapter  Google Scholar 

  21. Bhat AS, Savithri HS (2011) Investigations on the RNA binding and phosphorylation of groundnut bud necrosis virus nucleocapsid protein. Arch Virol 156:2163–2172. https://doi.org/10.1007/s00705-011-1110-0

    Article  CAS  PubMed  Google Scholar 

  22. Lokesh B, Rashmi PR, Amruta BS et al (2010) NSs encoded by groundnut bud necrosis virus is a bifunctional enzyme. PLoS One 5:e9757. https://doi.org/10.1371/journal.pone.0009757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhushan L, Abraham A, Choudhury NR et al (2015) Demonstration of helicase activity in the nonstructural protein, NSs, of the negative-sense RNA virus, Groundnut bud necrosis virus. Arch Virol 160:959–967. https://doi.org/10.1007/s00705-014-2331-9

    Article  CAS  PubMed  Google Scholar 

  24. Singh P, Indi SS, Savithri HS (2014) Groundnut bud necrosis virus encoded nsm associates with membranes via its C-terminal domain. PLoS One 9:e99370. https://doi.org/10.1371/journal.pone.0099370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Permar V, Singh A, Pandey V et al (2014) Tospo viral infection instigates necrosis and premature senescence by micro RNA controlled programmed cell death in Vigna unguiculata. Physiol Mol Plant Pathol 88:77–84. https://doi.org/10.1016/J.PMPP.2014.09.004

    Article  CAS  Google Scholar 

  26. Ingwell LL, Eigenbrode SD, Bosque-Pérez NA (2012) Plant viruses alter insect behavior to enhance their spread. Sci Rep 2:578. https://doi.org/10.1038/srep00578

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fiebig M, Poehling H-M, Borgemeister C (2004) Barley yellow dwarf virus, wheat, and Sitobion avenae: a case of trilateral interactions. Entomol Exp Appl 110:11–21. https://doi.org/10.1111/j.0013-8703.2004.00115.x

    Article  Google Scholar 

  28. Belliure B, Janssen A, Maris PC et al (2005) Herbivore arthropods benefit from vectoring plant viruses. Ecol Lett 8:70–79. https://doi.org/10.1111/j.1461-0248.2004.00699.x

    Article  Google Scholar 

  29. Stumpf CF, Kennedy GG (2007) Effects of tomato spotted wilt virus isolates, host plants, and temperature on survival, size, and development time of Frankliniella occidentalis. Entomol Exp Appl 123:139–147. https://doi.org/10.1111/j.1570-7458.2007.00541.x

    Article  Google Scholar 

  30. Sakimura K (1963) Frankliniella fusca, an additional vector for the tomato spotted wilt virus, with notes on Thrips tabaci, another vector. Phytopathology 53:412–415

    Google Scholar 

  31. Shinkai A (1962) Studies on insect transmission of rice virus diseases in Japan. Bull Natl Inst Agric Sci Ser C 14:1–112

    Google Scholar 

  32. Nakasuji F, Kiritani K (1970) Ill-effects of rice dwarf virus upon its vector, Nephotettix cincticeps UHLER (Hemiptera : Deltocephalidae), and its significance for changes in relative abundance of infected individuals among vector populations. Appl Entomol Zool 5:1–12. https://doi.org/10.1303/aez.5.1

    Article  Google Scholar 

  33. Sakurai T, Murai T, Maeda T, Tsumuki H (1998) Sexual differences in transmission and accumulation of tomato spotted wilt virus in its insect vector Frankliniella occidentalis (Thysanoptera : Thripidae). Appl Entomol Zool 33:583–588. https://doi.org/10.1303/aez.33.583

    Article  Google Scholar 

  34. Tyagi K, Kumar V, Singha D et al (2017) DNA barcoding studies on thrips in India: cryptic species and species complexes. Sci Rep 7:4898. https://doi.org/10.1038/s41598-017-05112-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stumpf CF, Kennedy GG (2005) Effects of tomato spotted wilt virus (TSWV) isolates, host plants, and temperature on survival, size, and development time of Frankliniella fusca. Entomol Exp Appl 114:215–225. https://doi.org/10.1111/j.1570-7458.2005.00251.x

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Dr. Ralf G. Dietzgen (QAAFI, the University of Queensland) for thorough reading and editing of the final manuscript. This research was supported by research grants from IARI, DBT (BT/PR26136/ AGIII/103/1005/2018) and SERB (EMR/2017/000590). We thank Prof. F. Murilo Zerbini, Editor, and two anonymous reviewers for critically reading the manuscript and suggesting substantial improvements.

Author information

Authors and Affiliations

Authors

Contributions

AG and BY conceived and designed research. AG and SJ conducted experiments. BY contributed virus and insect isolates. AD and AG analyzed data. AG and SJ wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Amalendu Ghosh.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Handling Editor: F. Murilo Zerbini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Basavaraj, Y.B., Jangra, S. et al. Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, Thrips palmi (Thysanoptera: Thripidae). Arch Virol 164, 2799–2804 (2019). https://doi.org/10.1007/s00705-019-04381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04381-z

Navigation