Skip to main content
Log in

Insect cell culture and applications to research and pest management

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Building on earlier research, insect cell culture began with the successful establishment of one cell line from pupal ovarian tissue. The field has grown to the extent that now over 500 insect cell lines have been established from many insect species representing numerous insect orders and from several different tissue sources. These cell lines are used as research tools in virology, in studies of signaling mechanisms to study insect immunity, hemocyte migration, and to test hypotheses about gene expression, and in screening programs designed to discover new insecticide chemistries. Virology research is revealing fundamentally new information on virus/host cell interactions. Studies in gene expression are uncovering signal transduction pathways that are new to insect science. Research is leading to the development of high-speed screening technologies that are essential in the search for new insect pest management tools. A few insect cell lines are, in routine industrial processes, designed to produce proteins of biomedical significance. Both primary cell cultures and established lines are used in basic biological studies to reveal how insect cells work. This review is designed to briefly cover the history of insect cell culture, recount some recent advances in the field, and offer a vision of the future of insect cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Attoui, H.; Jaafar, F. M.; Belhouchet, M.; Biagini, P.; Cantaloube, J.-F.; de Micco, P.; de Lamballerie, X. Expansion of family Reoviridae to include nine-segmented dsRNA viruses: isolation and characterization of a new virus designated Aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 343: 212–223; 2005.

    PubMed  CAS  Google Scholar 

  • Baker, M. D.; Wolanin, P. M.; Stock, J. B. Systems biology of bacterial chemotaxis. Curr. Opin. Microbiol 9: 187–192; 2006.

    PubMed  CAS  Google Scholar 

  • Beckmann, M.; Haack, K. J. Chemical pest control—insecticides for agriculture. Chem. Unserer Zeit 37: 88–97; 2003.

    CAS  Google Scholar 

  • Belloncik, S.; Petcharawan, O.; Couillard, M.; Charpentier, G.; Larue, B.; Guardado, H.; Charaeonsak, S.; Imanishi, S. Development and characterization of a continuous cell line, AFKM-On-H, from hemocytes of the European corn borer Ostrinia nubilalis (Hübner) (Lepidoptera, Pyralidae). In Vitro Cell. Dev. Biol. Anim 43: 245–254; 2007.

    PubMed  CAS  Google Scholar 

  • Berger, E.; Ringler, R.; Alahiotis, S.; Frank, M. Ecdysone-induced changes in morphology and protein synthesis in Drosophila cell cultures. Dev. Biol 62: 498–511; 1978.

    PubMed  CAS  Google Scholar 

  • Berger, E.; Wyss, C. Acetylcholinesterase induction by β-ecdysone in Drosophila cell lines and their hybrids. Somatic Cell Genet 6: 631–640; 1980.

    PubMed  CAS  Google Scholar 

  • Boyapalle, S.; Pal, N.; Miller, W. A.; Bonning, B. C. A glassy-winged sharpshooter cell line supports replication of Rhopalosiphum padi virus (Dicistroviridae). J. Invertebr. Pathol 94: 130–139; 2006.

    PubMed  Google Scholar 

  • Boyden, S. The chemotacxtic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med 115: 453–466; 1962.

    PubMed  CAS  Google Scholar 

  • Bryant, B.; Blair, C. D.; Olson, K. E.; Clem, R. J. Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol 38: 331–345; 2008.

    PubMed  CAS  Google Scholar 

  • Bundey, S.; Raymond, S.; Dean, P.; Roberts, S. K.; Dillon, R. J.; Charnley, A. K. Eicosanoid involvement in the regulation of behavioral fever in the desert locust, Schistocerca gregaria. Arch. Insect Biochem. Physiol 52: 183–192; 2003.

    PubMed  CAS  Google Scholar 

  • Chen, S.; Cheng, L.; Zhang, Q.; Lin, W.; Lu, X.; Brannan, J.; Zhou, Z. H.; Zhang, J. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedes albopictus C6/36 cell line. Virology 318: 123–133; 2004.

    PubMed  CAS  Google Scholar 

  • Cherbas, L.; Koehler, M. D.; Cherbas, P. Effects of juvenile hormone on the ecdysone response of Drosophila Kc cells. Dev. Genet 10: 177–188; 1989.

    PubMed  CAS  Google Scholar 

  • Christian, P. D.; Scotti, P. D.; Biopesticides from small RNA viruses of insects: aspects of their in vitro production. In: Maramorosch K.; Loeb M. J. (eds) Invertebrate cell culture: looking toward the twenty first century. Proceedings of the IX International Conference on Invertebrate Cell Culture. Society for In Vitro Biology, San Francisco, pp 73–81; 1996.

  • Clem, R. J. Baculoviruses and apoptosis: a diversity of genes and responses. Curr. Drug Targets 8: 1069–1074; 2007.

    PubMed  Google Scholar 

  • Condreay, J. P.; Kost, T. A. Baculovirus expression vectors for insect and mammalian cells. Curr. Drug Targets 8: 1126–1131; 2007.

    PubMed  CAS  Google Scholar 

  • Courgeon, A. M. Action of insect hormones at the cellular level. Morphological changes of a diploid cell line of Drosophila melanogaster. Exp. Cell Res 74: 327–336; 1972.

    PubMed  CAS  Google Scholar 

  • Creamer, R. Invertebrate tissue cultures as a tool to study insect transmission of plant viruses. In Vitro Cell. Dev. Biol. Anim 29: 284–288; 1993.

    Google Scholar 

  • Day, M. F.; Grace, T. D. C. Cultures of insect tissues. Annu. Rev. Entomol 4: 17–38; 1959.

    CAS  Google Scholar 

  • Decombel, L.; Tirry, L.; Smagghe, G. Action of 24-epibrassinolide on cell line of the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol 58: 145–156; 2005.

    PubMed  CAS  Google Scholar 

  • Dhadialla, T. S.; Retnakaran, A.; Smagghe, G. Insect growth and development disrupting insecticides. In: Gilbert L. I.; Iatrou K.; Gill S. (eds) Comprehensive insect molecular science. 6: Pergamon, New York, pp 55–116; 2005.

    Google Scholar 

  • Dinan, L. Ecdysteroid receptors in a tumorous blood cell line of Drosophila melanogaster. Arch. Insect Biochem. Physiol 2: 295–317; 1985.

    CAS  Google Scholar 

  • Dinan, L.; Bourne, P. C.; Meng, Y.; Sarker, S. D.; Tolentino, R. B.; Whithing, P. Assessment of natural products in the Drosophila melanogaster BII cell bioassay for ecdysteroid agonist and antagonist activities. Cell. Mol. Life Sci 58: 321–342; 2001.

    PubMed  CAS  Google Scholar 

  • Dübendorfer, A.; Liebig, B. Cell differentiation in vitro and establishment of permanent ecdysone-responsive cell lines from embryonic tissues of the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol 38: 397–407; 1992.

    Google Scholar 

  • Durmus, Y.; Büyükgüzel, E.; Terzi, B.; Tunaz, H.; Stanley, D.; Büyükgüzel, K. Eicosanoids mediate melatonic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turioinellae. J. Insect Physiol 54: 17–24; 2007.

    PubMed  Google Scholar 

  • Eide, P. E.; Caldwell, J. M.; Marks, E. P. Establishment of two cell lines from embryonic tissue of the tobacco hornworm, Manduca sexta (L.). In Vitro 11: 395–399; 1975.

    PubMed  CAS  Google Scholar 

  • Elias, C. B.; Jardin, B.; Kamen, A. Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system. In: Murhammer D. W. (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp. 225–245; 2007.

  • Fritz, J. H.; Girardin, S. E.; Philpott, D. J. Innate immune defense through RNA interference. Sci. STKE 13: 1–4; 2006.

    Google Scholar 

  • Funk, C. J.; Hunter, W. B.; Achor, D. S. Replication of insect iridescent virus 6 in a whitefly cell line. J. Invertebr. Pathol 77: 144–146; 2001.

    PubMed  CAS  Google Scholar 

  • Granados, R. R.; Naughton, M. Replication of Amscata moorei entomopoxvirus and Autographa californica nuclear polyhedrosis virus in hemocyte cell lines from Estigmene acrea. In: Kurstak E.; Maramorosch K. (eds) Invertebrate tissue culture. Applications in medicine, biology, and agriculture. Academic, New York, pp 379–389; 1976.

    Google Scholar 

  • Garcia, J. J.; Li, G.; Wang, P.; Zhong, J.; Granados, R. R. Primary and continuous midgut cell cultures from Pseudaletia unipuncta (Lepidoptera: Noctuidae). In Vitro Cell. Dev. Biol. Anim 37: 353–359; 2001.

    PubMed  CAS  Google Scholar 

  • Garcia, S.; Billecocq, A.; Crance, J.-M.; Prins, M.; Garin, D.; Bouloy, M. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J. Gen. Virol 87: 1985–1989; 2006.

    PubMed  CAS  Google Scholar 

  • Gaw, S.-Y. Culturing all types of silkworm tissues using the monolayer culture. Chin. Sci. Bull 7: 219–220; 1958.

    Google Scholar 

  • Gerlo, S.; Verdood, P.; Gellersen, B.; Hooghe-Peters, E. L.; Kooijman, R. J. Mechanism of prostaglandin (PG)E2-induced prolactin expression in human T cells: cooperation of two PGE2 receptor subtypes, E-Prostanoid (EP) 3 and EP4, via calcium- and cyclic adenosine 5′-monophosphate-mediated signaling pathways. J. Immunol 173: 5952–5962; 2004.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. P.; Kanost, M. R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol 42: 611–643; 1997.

    PubMed  CAS  Google Scholar 

  • Glaser, R. W. The growth of insect blood cells in vitro. Psyche 24: 1–6; 1917.

    Google Scholar 

  • Goodman, C. L.; El Sayed, G. N.; McIntosh, A. H.; Grasela, J. J.; Stiles, B. Establishment and characterization of insect cell lines from 10 lepidopteran species. In Vitro Cell. Dev. Biol. Anim 37: 367–373; 2001.

    PubMed  CAS  Google Scholar 

  • Goodman, W. G.; Granger, N. A. The juvenile hormone. In: Gilbert L. I.; Iatrou K.; Gill S. (eds) Comprehensive insect molecular science. 3: Pergamon, New York, pp 319–408; 2005.

    Google Scholar 

  • Goodwin, R. H.; Adams, J. R.; Shapiro, M. Replication of the entomopoxvirus from Amscata moorei in serum-free cultures of a gypsy moth cell line. J. Invertebr. Pathol 56: 190–205; 1990.

    Google Scholar 

  • Grace, T. D. C. Establishment of four strains of cells from insect tissues grown in vitro. Nature (London) 195: 788–789; 1962.

    CAS  Google Scholar 

  • Grace, T. D. C. Establishment of a line cells from the silkworm, Bombyx mori. Nature (London) 216: 613; 1967.

    CAS  Google Scholar 

  • Gringorten, J. L. Ion balance in the lepidopteran midgut and insecticidal action of Bacillus thuringiensis. In: Ishaaya I. (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin, pp 167–207; 2001.

    Google Scholar 

  • Gundersen-Rindal, D.; Dougherty, E. M. Evidence for integration of Glyptapanteles indiensis polydnavirus DNA into the chromosome of Lymantria dispar in vitro. Virus Res 66: 27–37; 2000.

    PubMed  CAS  Google Scholar 

  • Gundersen-Rindal D.; Lynn, D. E. Polydnavirus integration in lepidopteran host cells in vitro. J. Insect Physiol 49: 453–462; 2003.

    PubMed  CAS  Google Scholar 

  • Hemmes, H.; Lakatos, L.; Goldbach, R.; Burgyan, J.; Prins, M. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA 13: 1079–1089; 2007.

    PubMed  CAS  Google Scholar 

  • Hoa, N. T.; Keene, K. M.; Olson, K. E.; Sheng, L. Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem. Mol. Biol 33: 949–957; 2003.

    PubMed  CAS  Google Scholar 

  • Hoshino, K.; Isawa, H.; Tsuda, Y.; Yano, K.; Sasaki, T.; Yuda, M.; Takasaki, T.; Kobayashi, M.; Sawabe, K. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359: 405–414; 2007.

    PubMed  CAS  Google Scholar 

  • Hunnicutt, L. E.; Hunter, W. B.; Cave, R. D.; Powell, C. A.; Mozoruk, J. J. Complete genome sequence and molecular characterization of Homalodisca coagulata virus-1, a novel virus discovered in the glassy-winged sharpshooter (Hemiptera: Cicadellidae). Virology 350: 67–78; 2006.

    PubMed  CAS  Google Scholar 

  • Hunter, W. B.; Katsar, C. S.; Chaparro, J. X. Nucleotide sequence of 3′-end of Homalodisca coagulata Virus-1. A new leafhopper-infecting virus from the glassy-winged sharpshooter. J. Insect Sci. 6.28. Online: insectscience.org/6.28/; 2006.

  • Hunter, W. B.; Polston, J. E. Development of a continuous whitefly cell line [Homoptera: Aleyrodidae: Bemisia tabaci (Gennadius)] for the study of begomovirus. J. Invertebr. Pathol 77: 33–36; 2001.

    PubMed  CAS  Google Scholar 

  • Jin, T.; Hereld, D. Moving toward understanding eukaryotic chemotaxis. Eur. J. Cell Biol 85: 905–913; 2006.

    PubMed  CAS  Google Scholar 

  • Kamita, S. G.; Do, Z. N.; Samra, A. I.; Hagler, J. R.; Hammock, B. D. Characterization of cell lines developed from the glassy-winged sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae). In Vitro Cell. Dev. Biol. Anim 41: 149–153; 2005.

    PubMed  CAS  Google Scholar 

  • Keene, K. M.; Foy, B. D.; Sanchez-Vargas, I.; Beaty, B. J.; Blair, C. D.; Olson, K. E. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A 101: 17240–17245; 2004.

    PubMed  CAS  Google Scholar 

  • Kim, M.-K.; Sisson, G.; Stoltz, D. Ichnovirus infection of an established gypsy moth cell line. J. Gen. Virol 77: 2321–2328; 1996.

    PubMed  CAS  Google Scholar 

  • Knowles, B. H.; Ellar, D. J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxin with different insect specificity. Biochim. Biophys. Acta 924: 509–518; 1987.

    CAS  Google Scholar 

  • Lan, Q.; Gerenday, A.; Fallon, A. M. Cultured Aedes albopictus mosquito cells synthesize hormone-inducible proteins. In Vitro Cell. Dev. Biol. Anim 29: 813–818; 1993.

    Google Scholar 

  • Lavine, M. D.; Strand, M. R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol 32: 1295–1309; 2002.

    PubMed  CAS  Google Scholar 

  • Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol 25: 697–743; 2007.

    PubMed  CAS  Google Scholar 

  • Lennan, E.; Vandergaast, R.; Friesen, P. D. Baculovirus caspase inhibitors P49 and P35 block virus-induced apoptosis downstream of effector caspase DrICE activation in Drosophila melanogaster cells. J. Virol 81: 9319–9330; 2007.

    Google Scholar 

  • Lery, X.; Fediere, G.; Taha, A.; Salah, M.; Giannotti, J. A new small RNA virus persistently infecting an established cell line of Galleria mellonella, induced by a heterologous infection. J. Invertebr. Pathol 69: 7–13; 1997.

    PubMed  CAS  Google Scholar 

  • Lezzi, M.; Wyss, C. The antagonism between juvenile hormone and ecdysone. In: Gilbert L. I. (ed) The juvenile hormones. Plenum, New York, pp 252–269; 1976.

    Google Scholar 

  • Li, H.; Bonning, B. C. Evaluation of the insecticidal efficacy of wild type and recombinant baculoviruses. In: Murhammer D. W. (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp 379–405; 2007.

    Google Scholar 

  • Liu, N. T.; Zia, T. U.; Gaw, Z. Y. Tissue culture methods for cultivation of virus grasserie. Wuhan University Journal, Natural Science 3: 98; 1959.

    Google Scholar 

  • Llewellyn, Z. N.; Salman, M. D.; Pauszek, S.; Rodriguez, L. L. Growth and molecular evolution of vesicular stomatitis serotype New Jersey in cells derived from its natural insect-host: evidence for natural adaptation. Virus Res 89: 65–73; 2002.

    PubMed  CAS  Google Scholar 

  • Loeb, M. J.; Martin, P. A. W.; Hakim, R. S.; Goto, S.; Takeda, M. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol 47: 599–606; 2001.

    PubMed  CAS  Google Scholar 

  • Long, S. H.; McIntosh, A. H.; Grasela, J. J.; Goodman, C. L. The establishment of a Colorado potato beetle (Coleoptera: Chrysomelidae) pupal cell line. Appl. Entomol. Zool 37: 447–450; 2002.

    Google Scholar 

  • Lynn, D. E. Available lepidopteran insect cell lines. In: Murhammer D. W. (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp 117–144; 2007.

    Google Scholar 

  • Lynn, D. E.; Hung, A. C. F. Development of continuous cell lines from the egg parasitoids Trichogramma confusum and T. exiguum. Arch. Insect Biochem. Physiol 18: 99–104; 1991.

    PubMed  CAS  Google Scholar 

  • Lynn, D. E.; Oberlander, H. The establishment of cell lines from imaginal wing discs of Spodoptera frugiperda and Plodia interpunctella. J. Insect Physiol 29: 591–596; 1983.

    Google Scholar 

  • Maeda, S. Bombyx mori nuclear polyhedrosis virus and their use for expression of foreign genes in insect cells. In: Mitsuhashi J. (ed) Invertebrate cell system applications. CRC, Boca Raton, pp 167–181; 1989.

    Google Scholar 

  • Marks, E. P. Insect tissue culture—overview 1971–1978. Annu. Rev. Entomol 25: 73–101; 1980.

    CAS  Google Scholar 

  • Marutani-Hert, M.; Hunter, W. B.; Hall, D. G. Establishment of Asian citrus psyllid (Diaphorina citri) primary cultures. In Vitro Cell. Dev. Biol. Anim. in press; 2009.

  • McCearth, K. J.; Gooday, G. W. A rapid and sensitive microassay for determination of chitinolytic activity. J. Microbiol. Methods 14: 229–237; 1992.

    Google Scholar 

  • McIntosh, A. H.; Grasela, J. J.; Ignoffo, C. M. In vitro host range of the Hz-1 nonoccluded virus in insect cell lines. In Vitro Cell. Dev. Biol. Anim 43: 196–201; 2007.

    PubMed  CAS  Google Scholar 

  • Merchant, D.; Ertl, R. L.; Rennard, S. I.; Stanley, D. W.; Miller, J. S. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol 54: 215–221; 2008.

    PubMed  CAS  Google Scholar 

  • Metakovskii, E. V.; Cherdantseva, E. M.; Gvozdev, V. A. Action of ecdysterone on surface membrane glycoproteins of Drosophila melanogaster cells in culture. Mol. Biol 11: 158–170; 1977.

    CAS  Google Scholar 

  • Mikitani, K. Sensitive, rapid and simple method for evaluation of ecdysteroid agonist activity based on the mode of action of the hormone. Journal of Sericultural Science of Japan 64: 534–539; 1995.

    CAS  Google Scholar 

  • Mikitani, K. A new nonsteroidal chemical class of ligand for the ecdysteroid receptor 3,5-di-tert-butyl-4hydroxy-N-isobutyl-benzamide shows apparent insect molting hormone activities at molecular and cellular levels. Biochem. Biophys. Res. Commun 227: 427–432; 1996.

    PubMed  CAS  Google Scholar 

  • Miller, J. S.; Nguyen, T.; Stanley-Samuelson, D. W. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. U. S. A 91: 12418–12422; 1994.

    PubMed  CAS  Google Scholar 

  • Mitsuhashi, J. A new continuous cell line from larvae of the mosquito Aedes albopictus Diptera Culicidae. Biomed. Res. (Tokyo) 2: 599–606; 1981.

    Google Scholar 

  • Mosallanejad, H.; Soin, T.; Smagghe, G. Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm Spodoptera exigua. Arch. Insect Biochem. Physiol 67: 36–49; 2008a.

    PubMed  CAS  Google Scholar 

  • Mosallanejad, H.; Soin, T.; Swevers, L.; Iatrou, K.; Nakagawa, Y.; Smagghe, G. Non-steroidal ecdysteroid agonist chromafenozide: gene induction activity, cell proliferation inhibition and larvicidal toxicity. Pestic. Biochem. Physiol 92: 70–76; 2008b.

    CAS  Google Scholar 

  • Mudiganti, U.; Hernandez, R.; Ferreira, D.; Brown, D. T. Sindbis virus infection of two model insect cell systems: a comparative study. Virus Res 122: 28–34; 2006.

    PubMed  CAS  Google Scholar 

  • Nakagawa, Y.; Matsutani, M.; Kurihara, N.; Nishimura, K.; Fujita, T. Quantitative structure–activity studies of benzoylphenylurea larvicides. VIII. Inhibition of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis Walker. Pestic. Biochem. Physiol 43: 141–151; 1989.

    Google Scholar 

  • Nauen, R.; Smagghe, G. Mode of action of etoxazole. Pest Manag. Sci 62: 375–382; 2006.

    Google Scholar 

  • Negishi, M.; Katoh, H. Cyclopentenone prostaglandin receptors. Prostaglandins Other Lipid Mediat 68–69: 611–617; 2002.

    PubMed  Google Scholar 

  • Oberlander, H.; Silhacek, D. L. New perspectives on the mode of action of benzoylphenylurea insecticides. In: Ishaaya I.; Degheele D. (eds) Insecticides with novel modes of action. Springer, Berlin, pp 92–105; 1998.

    Google Scholar 

  • Palli, S. R.; Caputo, G. F.; Brownwright, A. J.; Sofi, S. S. Studies on apoptosis in a continuous midgut cell line, CF-203, of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). In: Maramorosch K.; Mitsuhashi J. (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science, Enfield, pp 43–51; 1997a.

    Google Scholar 

  • Palli, S. R.; Retnakaran, A. Molecular and biochemical aspects of chitin synthesis inhibition. In: Jolles P.; Muzzarelli R. A. A. (eds) Chitin and chitinases. Birkhäuser, Basel, pp 85–98; 1999.

    Google Scholar 

  • Palli, S. R.; Sohi, S. S.; Cook, B. J.; Primavera, M.; Retnakaran, A. Screening of 12 continuous cell lines for apoptosis. In: Maramorosch K.; Mitsuhashi J. (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science, Enfield1997b.

    Google Scholar 

  • Peel, D. J.; Milner, M. J. The response of Drosophila imaginal disc cell lines to ecdysteroids. Roux’s Arch. Dev. Biol 202: 23–35; 1992.

    CAS  Google Scholar 

  • Potvin, L.; Laprade, R.; Schwartz, J. L. Cry1Ac, a Bacillus thuringiensis toxin, triggers extracellular Ca2+ influx ad Ca2+ release from intracellular stores in Cf1 cells (Choristoneura fumiferana, Lepidoptera). J. Exp. Biol 201: 1851–1858; 1998.

    PubMed  CAS  Google Scholar 

  • Pringle, F. M.; Johnson, K. N.; Goodman, C. L.; McIntosh, A. H.; Ball, L. A. Providence virus: a new member of the Tetraviridae that infects cultured insect cells. Virology 306: 359–370; 2003.

    PubMed  CAS  Google Scholar 

  • Ress, C.; Maas, U.; Dorn, A. The Drosophila tumorous blood cell line l(2)mbn and its response to insect hormones, hormone agonists, and the natural growth regulators azadirachtin and plumbaginoids. In: Maramorosch K.; Mitsuhashi J. (eds) Invertebrate cell culture. Novel directions and biotechnology applications. Science, Enfield, pp 93–103; 1997.

    Google Scholar 

  • Sadrud-Din, S. Y.; Loeb, M. J.; Hakim, R. S. In vitro differentiation of isolated stem cells from the midgut of Manduca sexta larvae. J. Exp. Biol 199: 319–325; 1996.

    PubMed  Google Scholar 

  • Sanchez-Vargas, I.; Travanty, E. A.; Keene, K. M.; Franz, A. W. E.; Beaty, B. J.; Blair, C. D.; Olson, K. E. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102: 65–74; 2004.

    PubMed  CAS  Google Scholar 

  • Schmidt, M. R.; Brockmann, A.; Pirk, C. W. W.; Stanley, D. W.; Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol 54: 439–444; 2008.

    Google Scholar 

  • Schütz, S.; Sarnow, P. Interaction of viruses with the mammalian RNA interference pathway. Virology 344: 151–157; 2006.

    PubMed  Google Scholar 

  • Sinisterra, X. H.; McKenzie, C. L.; Hunter, W. B.; Shatters, R. G. Jr. Differential transcriptional activity of plant pathogenic Begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyroididae). J. Gen. Virol 86: 1525–1532; 2005.

    PubMed  CAS  Google Scholar 

  • Smagghe, G.; Braeckman, B. P.; Huys, N.; Raes, H. Cultured mosquito cells Aedes albopictus C6/36 (Dip., Culicidae) responsive to 20-hydroxyecdysone and non-steroidal ecdysone agonist. J. Appl. Entomol 127: 167–173; 2003.

    CAS  Google Scholar 

  • Smagghe, G.; Ryckaert, J.; Soin, T.; Caputo, G.; Van Damme, E. J. M. Effect of plant lectins on growth of insect midgut cells. In Vitro Cell. Dev. Biol. Anim 41: 34A; 2005a.

    Google Scholar 

  • Smagghe, G.; Vanhassel, W.; Moeremans, C.; De Wilde, D.; Goto, S.; Loeb, M. J.; Blackburn, M. B.; Hakim, R. S. Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann. N.Y. Acad. Sci 1040: 472–475; 2005b.

    PubMed  CAS  Google Scholar 

  • Smith, H. C.; Cavanaugh, C. K.; Friz, J. L.; Thompson, C. S.; Saggers, J. A.; Michelotti, E. I.; Garcia, J.; Tice, C. M. Synthesis and SAR of cis-1-benzoyl-1,2,3,4-tetrahydroquinoline ligands for control of gene expression in ecdysone responsive systems. Bioorg. Med. Chem. Lett 13: 1943–1946; 2003.

    PubMed  CAS  Google Scholar 

  • Sohi, S. S. Development of lepidopteran cell lines. In: Richardson C. D. (ed) Methods in molecular biology. Baculovirus expression protocols. Humana, New York, pp 397–411; 1995.

    Google Scholar 

  • Soin, T.; Swevers, L.; Mosallanejad, H.; Efrose, R.; Labropoulou, V.; Iatrou, K.; Smagghe, G. Juvenile hormone analogs do not affect directly the activity of the ecdysteroid receptor complex in insect culture cell lines. J. Insect Physiol 54: 429–438; 2008.

    PubMed  CAS  Google Scholar 

  • Spindler-Barth, M.; Spindler, K.-D. Ecdysteroid resistant subclones of the epithelial cell line from Chironomus tentans (Insecta, Diptera). I. Selection and characterization of resistant clones. In Vitro Cell. Dev. Biol. Anim 34: 116–122; 1998.

    PubMed  CAS  Google Scholar 

  • Spindler-Barth, M.; Spindler, K.-D.; Londershausen, M.; Thomas, H. Inhibition of chitin synthesis in an insect cell line. Pestic. Sci 25: 115–121; 1989.

    CAS  Google Scholar 

  • Stanley, D.; Miller, J. S. Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl 119: 1–13; 2006.

    CAS  Google Scholar 

  • Stanley, D.; Shapiro, M. Eicosanoid biosynthesis inhibitors increase the susceptibility of Lymantria dispar to nucleopolyhedrovirus LdMNPV. J. Invertebr. Pathol 95: 119–124; 2007.

    PubMed  CAS  Google Scholar 

  • Stanley, D. W. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol 51: 25–44; 2006.

    PubMed  CAS  Google Scholar 

  • Stanley, D. W.; Goodman, C.; An, S.; McIntosh, A.; Song, Q. Prostaglandins A1 and E1 influence gene expression in an established insect cell line (BCIRL-HzAM1 cells). Insect Biochem. Mol. Biol 38: 275–284; 2008.

    PubMed  CAS  Google Scholar 

  • Stiles, B.; Newman, S. M. Evidence for the induction of cuticle proteins by 20-hydroxyecdysone in 2 established insect cell lines. Arch. Insect Biochem. Physiol 21: 23–40; 1992.

    CAS  Google Scholar 

  • Suchman, E. L.; Carlson, J. O. Production of mosquito densonucleosis viruses by Aedes albopictus C6/36 cells adapted to suspension culture in serum-free protein-free media. In Vitro Cell. Dev. Biol. Anim 40: 74–75; 2004.

    PubMed  Google Scholar 

  • Swevers, L.; Kravariti, L.; Ciolfi, S.; Xenou-Kokoletsi, M.; Wong, G.; Ragousis, N.; Smagghe, G.; Nakagawa, Y.; Mazomenos, V.; Iatrou, K. A high-throughput screening system for fast detection of ecdysteroid mimetic and antagonistic substances using transformed Bombyx mori-derived cell lines. FASEB J 18: 134–146; 2004.

    PubMed  CAS  Google Scholar 

  • Tan, B.-H.; Nason, E.; Staeuber, N.; Jiang, W.; Monastryrskaya, K.; Roy, P. RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cells. J. Virol 75: 3937–3947; 2001.

    PubMed  CAS  Google Scholar 

  • Tice, C. M.; Hormann, R. E.; Thompson, C. S.; Fritz, J. L.; Cavanaugh, C. K.; Michelotti, E. L.; Garcia, J.; Nicolas, Z.; Alberico, F. Synthesis and SAR of alpha-acylaminoletone ligands for control of gene expression. Bioorg. Med. Chem. Lett 13: 475–478; 2003.

    PubMed  CAS  Google Scholar 

  • Toya, T.; Fukasawa, H.; Masui, A.; Endo, Y. Potent and selective partial ecdysone agonist activity of chromafenozide in Sf-9 cells. Biochem. Biophys. Res. Commun 292: 1087–1091; 2002.

    PubMed  CAS  Google Scholar 

  • Trager, W. J. Cultivation of virus grasserie in silkworm tissue. J. Exp. Med 61: 501–513; 1953.

    Google Scholar 

  • Trisyono, A.; Goodman, C. L.; Grasela, J. J.; McIntosh, A. H.; Chippendale, G. M. Establishment and characterization of an Ostrinia nubilalis cell line, and its response to ecdysone agonists. In Vitro Cell. Dev. Biol. Anim 36: 400–404; 2000.

    PubMed  CAS  Google Scholar 

  • Van Damme, E. J. M.; Rouge, P.; Peumans, W. J. Carbohydrate–protein interactions: plant lectins. In: Kamerling J. P.; Boons G. J.; Lee Y. C.; Suzuki A.; Taniguchi N.; Voragen A. J. G. (eds) Comprehensive glycoscience. From chemistry to systems biology. 3: Elsevier, New York, pp 563–599; 2007.

    Google Scholar 

  • Vandenborre, G.; Lannoo, N.; Smagghe, G.; Daniel, E.; Breite, A.; Soin, T.; Jacobsen, L.; Van Damme, E. J. M. Cell-free expression and functionality analysis of the tobacco lectin. In Vitro Cell. Dev. Biol. Anim 44: 228–235; 2008.

    PubMed  CAS  Google Scholar 

  • Van Rij, R. P.; Saleh, M.-C.; Berry, B.; Foo, C.; Houk, A.; Antoniewski, C.; Andino, R. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20: 2985–2995; 2006.

    PubMed  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J.; McCawley, P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13: 213–217; 1977.

    PubMed  CAS  Google Scholar 

  • Vlak, J. M. Professor Shang yin Gao (1909–1989): his legacy in insect cell culture and insect virology. J. Invertebr. Pathol 95: 152–160; 2007.

    PubMed  Google Scholar 

  • Wang, P.; McCarthy, W. J. Cytolytic activity of Bacillus thuringiensis Cry1C and Cry1AC toxins to Spodoptera sp. midgut epithelial cells in vitro. In Vitro Cell. Dev. Biol. Anim 33: 315–323; 1997.

    PubMed  CAS  Google Scholar 

  • Ward, G. B.; Newman, S. M.; Klosterman, H. J.; Marks, E. P. Effect of 20-hydroxyecdysone and diflubenzuron on chitin production by a cockroach cell line. In Vitro Cell. Dev. Biol. Anim 24: 326–332; 1988.

    CAS  Google Scholar 

  • Weaver, S. C. Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol 299: 285–314; 2006.

    PubMed  CAS  Google Scholar 

  • Wheelock, C. E.; Nakagawa, Y.; Harada, T.; Oikawa, N.; Akamatsu, M.; Smagghe, G.; Stefanou, D.; Iatrou, K.; Swevers, L. High throughput screening of ecdysone agonists using a reporter gene assay followed by 3-D QSAR analysis of the molting hormonal activity. Bioorg. Med. Chem 14: 1143–1159; 2006.

    PubMed  CAS  Google Scholar 

  • Williams, C. M. Third generation pesticides. Sci. Am 217: 13–17; 1967.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-Y.; Yang, H.-N.; Lo, C.-F.; Wang, C.-H. A Perina nuda cell line (NTU-Pn-HF) from pupal ovary that is persistently infected with a picorna-like virus (PnPV). Appl. Entomol. Zool 37: 171–179; 2002.

    Google Scholar 

  • Wyss, C. Chironomus tentans epithelial cell lines sensitive to ecdysteroids, juvenile hormone, insulin and heat shock. Exp. Cell Res 139: 309–319; 1982.

    PubMed  CAS  Google Scholar 

  • Zhang, X. B.; Candas, M.; Griko, N. B.; Taussig, R.; Bulla, L. A. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. U. S. A 103: 9897–9902; 2006.

    PubMed  CAS  Google Scholar 

  • Zhou, F.; Pu, Y.; Wei, T.; Liu, H.; Deng, W.; Wei, C.; Ding, B.; Omura, T.; Li, Y. The P2 capsid protein of the nonenveloped rice dwarf phytoreovirus induces membrane fusion in insect host cells. Proc. Natl. Acad. Sci. U. S. A 104: 19547–19552; 2007.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Arthur McIntosh (BCIRL) for his helpful information. Dr. Guy Smagghe acknowledges the support by Ghent University, the Flemish Institute for Promotion of Scientific Research in Industry (IWT), and the Fund for Scientific Research (FWO-Vlaanderen). Research in BCIRL was supported by the USDA/Agricultural Research Service. This article reports the results of research only and mention of a proprietary product does not constitute an endorsement or recommendation for its use by the USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Smagghe.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smagghe, G., Goodman, C.L. & Stanley, D. Insect cell culture and applications to research and pest management. In Vitro Cell.Dev.Biol.-Animal 45, 93–105 (2009). https://doi.org/10.1007/s11626-009-9181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9181-x

Keywords

Navigation