Skip to main content
Log in

Single-atom catalysis for advanced oxidation and reduction systems in water decontamination

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Water scarcity is an escalating global crisis, posing a severe threat to populations worldwide. Consequently, exploring various materials to remove emerging contaminants from freshwater sources has garnered significant attention. In this regard, single-atom catalysis (SACs) has emerged as a catalyst of scientific progress in water purification and treatment methodologies during recent decades. SACs exhibit exceptional catalytic activity, selectivity and stability, due to their near-perfect atom utilization, highly unsaturated coordination environment and uniform reaction centers. However, a comprehensive and critical review encompassing the successful integration of SACs into water purification processes needs to be completed. This review aims to accentuate recent trends by presenting the synthesis, structure, and environment and energy application-relevant properties of SACs. The results show that a comprehensive and multi-perspective summary of the advantages of SACs in environmental remediation can have significant benefits, such as fast kinetics, cost-effectiveness, selectivity. The oxidation and reduction processes of SACs and functional SACs materials in water purification were emphasized. Furthermore, the last section is devoted to the current research gaps and further perspectives on the application of SACs in water treatment, which are summarized and analyzed.

Graphical Abstract

摘要

水资源匮乏是一种日益加剧的全球危机,对全球人口构成严重威胁。因此,探索用于水体净化的材料已引起广泛关注,基于此,单原子催化剂在近几十年的水净化方法中已成为重要的纳米材料。由于其高效的原子利用率、高度不饱和的配位环境和均匀的反应中心,单原子催化剂表现出卓越的催化活性、选择性和稳定性。本综述旨在通过介绍SACs的合成、结构特性以及在环境和能源领域的相关应用,来强调其发展趋势。对单原子催化剂在环境修复中的优势进行全面和多角度的总结,并阐明其在水处理过程中的显著优势,包括快速的动力学、成本效益、选择性等。进而强调了功能性单原子催化剂在水净化中的氧化和还原过程。最后,总结和分析了单原子催化剂在水处理中的应用和当前的研究壁垒,并为后续研究进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [42]. Copyright 2022, American Chemical Society. b Preparation and model structure of noble-SACs. Reproduced with permission from Ref. [43]. Copyright 2019, American Association for the Advancement of Science. c Schematic diagram of synthesis process of Cu–SACs membranes functionalized by thiol groups. Reproduced with permission from Ref. [44]. Copyright 2022, American Chemical Society. d Robot synthesis platform photo and scheme flowchart, comparison of metal content between automatic and manual synthesis of Ni-nitrogen-doped carbon catalysts. Reproduced with permission from Ref. [45]. Copyright 2022, Springer Nature

Fig. 2

Reproduced with permission from Ref. [52]. Copyright 2022, Springer Nature

Fig. 3

Reproduced with permission from Ref. [65]. Copyright 2017, American Chemical Society. b Schematic diagram of pyrolysis process of C-g-C3N4–Fe. Reproduced with permission from Ref. [66]. Copyright 2020, Wiley. c Universal synthesis procedure of Metal-SACs in two steps. Reproduced with permission from Ref. [67]. Copyright 2019, Springer Nature

Fig. 4

Reproduced with permission from Ref. [73]. Copyright 2021, Wiley. b Schematic illustration of preparation of Cu–SACs support on nitrogen-doped carbon. Reproduced with permission from Ref. [74]. Copyright 2018, Springer Nature

Fig. 5

Reproduced with permission from Ref. [34]. Copyright 2011, Springer Nature. c Atomic resolution image showing a Pt single atom located in clean region of MoS2; d enlarged image from boxed area in c, and e corresponding DFT relax atomic model. Reproduced with permission from Ref. [83]. Copyright 2017, American Chemical Society. f Low-temperature STM image of FeN4/graphene and g simulated STM image; h dl/dV spectra and (inset) image acquired along white line. Reproduced with permission from Ref. [80]. Copyright 2015, American Association for the Advancement of Science. i Atom-resolved STM image and j ball model of Co-Mo-S. Reproduced with permission from Ref. [84]. Copyright 2007, Elsevier

Fig. 6

Reproduced with permission from Ref. [89]. Copyright 2015, American Association for the Advancement of Science. c EXAFS, d Fourier transforms and e wavelet transform for Co-nitrogen-doped graphene oxide and Co-graphene, respectively. Reproduced with permission from Ref. [90]. Copyright 2015, Springer Nature. XANES and EXAFS spectra of f, h Co K-edge and g, i Bi L3-edge. Reproduced with permission from Ref. [91]. Copyright 2019, Springer Nature. j Comparison XPS spectra of Pd–SACs on mesoporous support; k, l BET surface area and Pd2+/Pd4+ ratio correlation with different Pd surface concentrations. Reproduced with permission from Ref. [92]. Copyright 2017, Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [93]. Copyright 2016, Wiley. d Positron lifetime spectrum of BiOCl nanosheets and BiOCl nanoplates, respectively. e, f schematic diagrammatic of positrons captured by VBi‴ defect and VBi‴VOVBi‴ vacancy associates, respectively. Reproduced with permission from Ref. [95]. Copyright 2013, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [86]. Copyright 2018, Springer Nature. b Geometric structures and c calculated formation energy (Ef) of Fe-graphene and Fe-nitrogen-graphene. Reproduced with permission from Ref. [98]. Copyright 2019, Elsevier

Fig. 9

Reproduced with permission from Ref. [102]. Copyright 2019, Springer Nature. b Six typical configurations of [PtCl6]2– on different supports and corresponding calculated free energies. Reproduced with permission from Ref. [103]. Copyright 2019, Springer Nature. c Optimized structures for Pt–MoN and Pt–α–MoC; d free energy profiles for ORR over Pt–SACs at various potentials. Reproduced with permission from Ref. [104]. Copyright 2019, American Chemical Society. e Proposed mechanism of O2 evolution over HCM@Ni–N; f free energy diagram at 0 V for OER over HCM, HCM@N, HCM@Ni–N. Reproduced with permission from Ref. [105]. Copyright 2019, Wiley

Fig. 10

Reproduced with permission from Ref. [113]. Copyright 2017, Elsevier

Fig. 11

Reproduced with permission from Ref. [118]. Copyright 2021, Elsevier

Fig. 12

Reproduced with permission from Ref. [122]. Copyright 2019, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [44]. Copyright 2022, American Chemical Society. b Fabrication scheme of C–MOF–ACs and mechanism of sulfite activation. Reproduced with permission from Ref. [112]. Copyright 2020, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [133]. Copyright 2017, Elsevier

Fig. 15

Reproduced with permission from Ref. [139]. Copyright 2021, Springer Nature

Fig. 16

Reproduced with permission from Ref. [152]. Copyright 2020, Elsevier. c Schematic mechanism of hydrodefluorination activation on Pt–SACs. Reproduced with permission from Ref. [155]. Copyright 2018, American Chemical Society

Similar content being viewed by others

References

  1. Ly QV, Cui LL, Asif MB, Khan W, Nghiem LD, Hwang Y, Zhang ZH. Membrane-based nanoconfined heterogeneous catalysis for water purification: a critical review. Water Res. 2023;230:119577. https://doi.org/10.1016/j.watres.2023.119577.

    Article  CAS  PubMed  Google Scholar 

  2. Villarín MC, Merel S. Paradigm shifts and current challenges in wastewater management. J of Hazard Mater. 2020;390:122139. https://doi.org/10.1016/j.jhazmat.2020.122139.

    Article  CAS  Google Scholar 

  3. Zodrow KR, Li QL, Buono RM, Chen W, Daigger G, Dueñas-Osorio L, Elimelech M, Huang X, Jiang GB, Kim JH, Logan BE, Sedlak DL, Westerhoff P, Alvarez PJJ. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ Sci Technol. 2017;51(18):10274. https://doi.org/10.1021/acs.est.7b01679.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Liu YW, Wei Q, Wei D. A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. J of Hazard Mater. 2020;387:121682. https://doi.org/10.1016/j.jhazmat.2019.121682.

    Article  CAS  Google Scholar 

  5. Corominas L, Byrne DM, Guest JS, Hospido A, Roux P, Shaw A, Short MD. The application of life cycle assessment (LCA) to wastewater treatment: a best practice guide and critical review. Water Res. 2020;184:116058. https://doi.org/10.1016/j.watres.2020.116058.

    Article  CAS  PubMed  Google Scholar 

  6. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U. Evaluation of advanced oxidation processes for water and wastewater treatment–a critical review. Water Res. 2018;139:118. https://doi.org/10.1016/j.watres.2018.03.042.

    Article  CAS  PubMed  Google Scholar 

  7. Nagar A, Pradeep T. Clean Water through nanotechnology: needs, gaps, and fulfillment. ACS Nano. 2020;14(6):6420. https://doi.org/10.1021/acsnano.9b01730.

    Article  CAS  PubMed  Google Scholar 

  8. Nieto-Sandoval J, Munoz M, de Pedro ZM, Casas JA. Catalytic hydrodechlorination as polishing step in drinking water treatment for the removal of chlorinated micropollutants. Sep Purif Technol. 2019;227:115717. https://doi.org/10.1016/j.seppur.2019.115717.

    Article  CAS  Google Scholar 

  9. Gągol M, Przyjazny A, Boczkaj G. Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chem Eng J. 2018;338:599. https://doi.org/10.1016/j.cej.2018.01.049.

    Article  CAS  Google Scholar 

  10. Yu GF, Wang YX, Cao HB, Zhao H, Xie YB. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification. Environ Sci Technol. 2020;54(10):5931. https://doi.org/10.1021/acs.est.0c00575.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu HY, Liu MT, Wang G, Du RR, Zhao HY, Lu H, Yang SQ, Tang S, Guo ZJ, Yang J, Zhu CZ, Yang F. Constructing core@shell structured photothermal nanosphere with thin carbon layer confined Co-Mn bimetals for pollutant degradation and solar interfacial water evaporation. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02499-3.

    Article  Google Scholar 

  12. Tokazhanov G, Ramazanova E, Hamid S, Bae S, Lee W. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: a review. Chem Eng J. 2020;384:123252. https://doi.org/10.1016/j.cej.2019.123252.

    Article  CAS  Google Scholar 

  13. Li JY, Wang XY, Tian J, Zhang XL, Shi F. Co-Fe quantum dots coupled with ultrathin g-C3N4 nanosheets as efficient and stable photo-Fenton catalysts. Rare Met. 2023;42(6):1877. https://doi.org/10.1007/s12598-022-02226-4.

    Article  CAS  Google Scholar 

  14. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature. 2008;454(7207):981. https://doi.org/10.1038/nature07194.

    Article  CAS  PubMed  Google Scholar 

  15. Ma YJ, Ma CL, Xu JX, Wang L, Gong LY, Wang J. Pd/Ru decorated Co3O4 catalyst for high-efficiency oxygen catalytic performance. Chin. J Rare Met. 2023;47(12):1716. https://doi.org/10.13373/j.cnki.cjrm.XY22100009.

    Article  Google Scholar 

  16. Yan Y, Cui YB, Wang QY, Che ZX, Liu T, Li AR, Zhou W. Mg-doped CaCO3 nanoarchitectures assembled by (4–4-1) high-index facets for efficient trace removal of Pb(II). Rare Met. 2023;42(2):525. https://doi.org/10.1007/s12598-022-02181-0.

    Article  CAS  Google Scholar 

  17. Mitchell S, Vorobyeva E, Pérez-Ramírez J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew Chem Int Ed. 2018;57(47):15316. https://doi.org/10.1002/anie.201806936.

    Article  CAS  Google Scholar 

  18. Daelman N, Capdevila-Cortada M, López N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat Mater. 2019;18(11):1215. https://doi.org/10.1038/s41563-019-0444-y.

    Article  CAS  PubMed  Google Scholar 

  19. Jin RC, Higaki T. Open questions on the transition between nanoscale and bulk properties of metals. Commun Chem. 2021;4(1):28. https://doi.org/10.1038/s42004-021-00466-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740. https://doi.org/10.1021/ar300361m.

    Article  CAS  PubMed  Google Scholar 

  21. Liu JY. Catalysis by supported single metal atoms. ACS Catal. 2017;7(1):34. https://doi.org/10.1021/acscatal.6b01534.

    Article  CAS  Google Scholar 

  22. Rooney JJ, Webb G. The importance of π-bonded intermediates in hydrocarbon reactions on transition metal catalysts. J Catal. 1964;3(6):488. https://doi.org/10.1016/0021-9517(64)90049-1.

    Article  CAS  Google Scholar 

  23. Vidal V, Théolier A, Thivolle-Cazat J, Basset JM. Metathesis of alkanes catalyzed by silica-supported transition metal hydrides. Science. 1997;276(5309):99. https://doi.org/10.1126/science.276.5309.99.

    Article  CAS  PubMed  Google Scholar 

  24. Kirlin PS, Gates BC. Activation of the C–C bond provides a molecular basis for structure sensitivity in metal catalysis. Nature. 1987;325(6099):38. https://doi.org/10.1038/325038a0.

    Article  CAS  Google Scholar 

  25. Wovchko EA, Yates JT. Activation of O2 on a photochemically generated RhI site on an Al2O3 surface: low-temperature O2 dissociation and CO oxidation. J Am Chem Soc. 1998;120(40):10523. https://doi.org/10.1021/ja981241y.

    Article  CAS  Google Scholar 

  26. Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rösch N. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): one atom is enough! J Am Chem Soc. 2000;122(14):3453. https://doi.org/10.1021/ja9922476.

    Article  CAS  Google Scholar 

  27. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 2003;301(5635):935. https://doi.org/10.1126/science.1085721.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Shi H, Xu BQ. Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed. 2005;44(43):7132. https://doi.org/10.1002/anie.200502101.

    Article  CAS  Google Scholar 

  29. Yang M, Allard LF, Flytzani-Stephanopoulos M. Atomically dispersed Au–(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J Am Chem Soc. 2013;135(10):3768. https://doi.org/10.1021/ja312646d.

    Article  CAS  PubMed  Google Scholar 

  30. Lu J, Aydin C, Browning ND, Gates BC. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew Chem Int Ed. 2012;51(24):5842. https://doi.org/10.1002/anie.201107391.

    Article  CAS  Google Scholar 

  31. Wang L, Guan EJ, Zhang J, Yang JH, Zhu YH, Han Y, Yang M, Cen C, Fu G, Gates BC, Xiao FS. Single-site catalyst promoters accelerate metal catalyzed nitroarene hydrogenation. Nat Commun. 2018;9:1362. https://doi.org/10.1038/s41467-018-03810-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen YJ, Ji SF, Chen C, Peng Q, Wang DS, Li YD. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018;2:1242. https://doi.org/10.1016/j.joule.2018.06.019.

    Article  CAS  Google Scholar 

  33. Lang R, Du XR, Huang YK, Jiang XZ, Zhang Q, Guo YL, Liu KP, Qiao BT, Wang AQ, Zhang T. Single-atom catalysts based on the metal–oxide interaction. Chem Rev. 2020;120(21):11986. https://doi.org/10.1021/acs.chemrev.0c00797.

    Article  CAS  PubMed  Google Scholar 

  34. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634. https://doi.org/10.1038/nchem.1095.

    Article  CAS  PubMed  Google Scholar 

  35. Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloy catalysis. Chem Rev. 2020;120(21):12044. https://doi.org/10.1021/acs.chemrev.0c00078.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng NC, Zhang L, Doyle-Davis K, Sun XL. Single-atom catalysts: from design to application. Electrochem Energy Rev. 2019;2(4):539. https://doi.org/10.1007/s41918-019-00050-6.

    Article  Google Scholar 

  37. Zhang YM, Zhao JH, Wang H, Xiao B, Zhang W, Zhao XB, Lv TP, Thangamuthu M, Zhang J, Guo Y, Ma JN, Lin LN, Tang JW, Huang R, Liu QJ. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat Commun. 2022;13(1):58. https://doi.org/10.1038/s41467-021-27698-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin J, Wang AQ, Qiao BT, Liu XY, Yang XF, Wang XD, Liang JX, Li J, Liu JY, Zhang T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc. 2013;135(41):15314. https://doi.org/10.1021/ja408574m.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang ZD, Zhu JX, Chen SH, Sun WM, Wang DS. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew Chem Int Ed. 2023;62:e202215136. https://doi.org/10.1002/anie.202215136.

    Article  CAS  Google Scholar 

  40. Shavisi Y, Sharifnia S, Zendehzaban M, Mirghavami ML, Kakehazar S. Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst. J Ind Eng Chem. 2014;20(5):2806. https://doi.org/10.1016/j.jiec.2013.11.011.

    Article  CAS  Google Scholar 

  41. Chen JF, Chen L, Wang X, Rao ZP, Sun J, Chen AY, Xie XF. Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene. J Colloid Interface Sci. 2022;605:674. https://doi.org/10.1016/j.jcis.2021.07.129.

    Article  CAS  PubMed  Google Scholar 

  42. Gao YX, Yan DX, Wang CQ, Chen J, Chen J, Jia HP. Regeneration of La2O3-supported Pt nanoparticles giving high loadings of thermally stable Pt single atoms on La2O3 supports: implications for catalysis. ACS Appl Nano Mater. 2022;5(2):2688. https://doi.org/10.1021/acsanm.1c04363.

    Article  CAS  Google Scholar 

  43. Wang L, Chen MX, Yan QQ, Xu SL, Chu SQ, Chen P, Lin Y, Liang HW. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci Adv. 2019;5(10):6322. https://doi.org/10.1126/sciadv.aax6322.

    Article  CAS  Google Scholar 

  44. Ma W, Sun M, Huang DH, Chu CH, Hedtke T, Wang XX, Zhao YM, Kim JH, Elimelech M. Catalytic membrane with copper single-atom catalysts for effective hydrogen peroxide activation and pollutant destruction. Environ Sci Technol. 2022;56(12):8733. https://doi.org/10.1021/acs.est.1c08937.

    Article  CAS  PubMed  Google Scholar 

  45. Hai X, Xi SB, Mitchell S, Harrath K, Xu HM, Akl DF, Kong D, Li J, Li ZJ, Sun T, Yang HM, Cui YG, Su CL, Zhao XX, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nano. 2022;17(2):174. https://doi.org/10.1038/s41565-021-01022-y.

    Article  CAS  Google Scholar 

  46. Leal MFC, Van Den Berg CMG. Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat Geochem. 1998;4(1):49. https://doi.org/10.1023/A:1009653002399.

    Article  CAS  Google Scholar 

  47. Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJJ, Kim H, Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun. 2016;7(1):10922. https://doi.org/10.1038/ncomms10922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao YX, Zhou F, Zhou HC, Su HB. The structural and bonding evolution in cysteine–gold cluster complexes. Phys Chem Chem Phys. 2013;15(5):1690. https://doi.org/10.1039/C2CP42830J.

    Article  CAS  PubMed  Google Scholar 

  49. Hai X, Xi SB, Mitchell S, Harrath K, Xu HM, Akl DF, Kong D, Li J, Li ZJ, Sun T, Yang HM, Cui YG, Su CL, Zhao XX, Li J, Pérez-Ramírez J, Lu J. Publisher Correction: Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nano. 2022;17(3):331. https://doi.org/10.1038/s41565-022-01090-8.

    Article  CAS  Google Scholar 

  50. Zhu JT, Cai LJ, Yin XM, Wang Z, Zhang LF, Ma HB, Ke YX, Du YH, Xi SB, Wee ATS, Chai Y, Zhang WJ. Enhanced electrocatalytic hydrogen evolution activity in single atom Pt-decorated VS2 nanosheets. ACS Nano. 2020;14:5600. https://doi.org/10.1016/j.cej.2020.124382.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang LZ, Fischer JMTA, Jia Y, Yan XC, Xu W, Wang XY, Chen J, Yang DJ, Liu HW, Zhuang LZ, Hankel M, Searles DJ, Huang KK, Feng SH, Brown CL, Yao XD. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc. 2018;140(34):10757. https://doi.org/10.1021/jacs.8b04647.

    Article  CAS  PubMed  Google Scholar 

  52. Shi Y, Huang WM, Li J, Zhou Y, Li ZQ, Yin YC, Xia XH. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat Commun. 2020;11(1):4558. https://doi.org/10.1038/s41467-020-18430-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu TT, Gao WB, Wang QQ, Dou ML, Zhang ZP, Wang F. Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew Chem Int Ed. 2020;59(46):20423. https://doi.org/10.1002/anie.202009612.

    Article  CAS  Google Scholar 

  54. Zhou P, Lv F, Li N, Zhang YL, Mu ZJ, Tang YH, Lai JP, Chao YG, Luo MC, Lin F, Zhou JH, Su D, Guo SJ. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy. 2019;56:127. https://doi.org/10.1016/j.nanoen.2018.11.033.

    Article  CAS  Google Scholar 

  55. Liu JB, Liao JW, Huang K, Dong JC, He GC, Gong ZC, Fei HL. A general strategy to remove metal aggregates toward metal–nitrogen–carbon catalysts with exclusive atomic dispersion. Adv Mater. 2023;35(15):2211398. https://doi.org/10.1002/adma.202211398.

    Article  CAS  Google Scholar 

  56. Muravev V, Spezzati G, Su YQ, Parastaev A, Chiang FK, Longo A, Escudero C, Kosinov N, Hensen EJM. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat Catal. 2021;4(6):469. https://doi.org/10.1038/s41929-021-00621-1.

    Article  CAS  Google Scholar 

  57. Zu XL, Li XD, Liu W, Sun YF, Xu JQ, Yao T, Yan WS, Gao S, Wang CM, Wei SQ, Xie Y. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv Mater. 2019;31(15):1808135. https://doi.org/10.1002/adma.201808135.

    Article  CAS  Google Scholar 

  58. Wang J, Liu W, Luo G, Li ZJ, Zhao C, Zhang HR, Zhu M, Xu Q, Wang XQ, Zhao CM, Qu YT, Yang ZK, Yao T, Li YF, Lin Y, Wu Y, Li YD. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energ Environ Sci. 2018;11(12):3375. https://doi.org/10.1039/C8EE02656D.

    Article  CAS  Google Scholar 

  59. Sun TT, Xu LB, Wang DS, Li YD. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019;12(9):2067. https://doi.org/10.1007/s12274-019-2345-4.

    Article  CAS  Google Scholar 

  60. Yin PQ, Yao T, Wu YE, Zheng LR, Lin Y, Liu W, Ju HX, Zhu JF, Hong X, Deng ZX, Zhou G, Wei SQ, Li YD. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed. 2016;55(36):10800. https://doi.org/10.1002/anie.201604802.

    Article  CAS  Google Scholar 

  61. Yang T, Fan SS, Li Y, Zhou Q. Fe-N/C single-atom catalysts with high density of Fe–Nx sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A: electron-transfer mechanism. Chem Eng J. 2021;419:129590. https://doi.org/10.1016/j.cej.2021.129590.

    Article  CAS  Google Scholar 

  62. Zhao CM, Dai XY, Yao T, Chen WX, Wang XQ, Wang J, Yang J, Wei SQ, Wu YE, Li YD. Ionic rxchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc. 2017;139(24):8078. https://doi.org/10.1021/jacs.7b02736.

    Article  CAS  PubMed  Google Scholar 

  63. Xiao ML, Chen YT, Zhu JB, Zhang H, Zhao X, Gao LQ, Wang X, Zhao J, Ge JJ, Jiang Z, Chen SL, Liu CP, Xing W. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic geometric engineering. J Am Chem Soc. 2019;141(44):17763. https://doi.org/10.1021/jacs.9b08362.

    Article  CAS  PubMed  Google Scholar 

  64. Tang C, Chen L, Li HJ, Li LQ, Jiao Y, Zheng Y, Xu HL, Davey K, Qiao SZ. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J Am Chem Soc. 2021;143(20):7819. https://doi.org/10.1021/jacs.1c03135.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang HG, Hwang S, Wang MY, Feng ZX, Karakalos S, Luo LL, Qiao Z, Xie XH, Wang CM, Su D, Shao YY, Wu G. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc. 2017;139(40):14143. https://doi.org/10.1021/jacs.7b06514.

    Article  CAS  PubMed  Google Scholar 

  66. Ni WP, Liu ZX, Zhang Y, Ma C, Deng HQ, Zhang SG, Wang SY. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Adv Mater. 2021;33(1):2003238. https://doi.org/10.1002/adma.202003238.

    Article  CAS  Google Scholar 

  67. Yang HZ, Shang L, Zhang QH, Shi R, Waterhouse GIN, Gu L, Zhang TR. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun. 2019;10(1):4585. https://doi.org/10.1038/s41467-019-12510-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shen R, Chen WX, Peng Q, Lu SQ, Zheng LR, Cao X, Wang Y, Zhu W, Zhang JT, Zhuang ZB, Chen C, Wang DS, Li YD. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem. 2019;5(8):2099. https://doi.org/10.1016/j.chempr.2019.04.024.

    Article  CAS  Google Scholar 

  69. Zhang L, Si RT, Liu HS, Chen N, Wang Q, Adair K, Wang ZQ, Chen JT, Song ZX, Li JJ, Banis MN, Li RY, Sham TK, Gu M, Liu LM, Botton GA, Sun XL. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun. 2019;10(1):4936. https://doi.org/10.1038/s41467-019-12887-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu SC, Wang ZX, Dull S, Liu YZ, Lee DU, Lezama Pacheco JS, Orazov M, Vullum PE, Dadlani AL, Vinogradova O, Schindler P, Tam Q, Schladt TD, Mueller JE, Kirsch S, Huebner G, Higgins D, Torgersen J, Viswanathan V, Jaramillo TF, Prinz FB. Direct integration of strained-Pt catalysts into proton-exchange-membrane fuel cells with atomic layer deposition. Adv Mater. 2021;33(30):2007885. https://doi.org/10.1002/adma.202007885.

    Article  CAS  Google Scholar 

  71. Li JJ, Jiang YF, Wang Q, Xu CQ, Wu DJ, Banis MN, Adair KR, Doyle-Davis K, Meira DM, Finfrock YZ, Li WH, Zhang L, Sham TK, Li R, Chen N, Gu M, Li J, Sun XL. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat Commun. 2021;12(1):6806. https://doi.org/10.1038/s41467-021-27143-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li JJ, Banis MN, Ren ZH, Adair KR, Doyle-Davis K, Meira DM, Finfrock YZ, Zhang L, Kong FP, Sham TK, Li RY, Luo J, Sun XL. Unveiling the nature of Pt single-stom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small. 2021;17(11):2007245. https://doi.org/10.1002/smll.202007245.

    Article  CAS  Google Scholar 

  73. Chen C, Ou W, Yam KM, Xi SB, Zhao XX, Chen S, Li J, Lyu P, Ma L, Du YH, Yu W, Fang HY, Yao CH, Hai X, Xu HM, Koh MJ, Pennycook SJ, Lu JL, Lin M, Su CL, Zhang C, Lu J. Zero-valent palladium single-atoms catalysts confined in black phosphorus for efficient semi-hydrogenation. Adv Mater. 2021;33(35):2008471. https://doi.org/10.1002/adma.202008471.

    Article  CAS  Google Scholar 

  74. Qu YT, Li ZJ, Chen WX, Lin Y, Yuan TW, Yang ZK, Zhao CM, Wang J, Zhao C, Wang X, Zhou FY, Zhuang ZB, Wu Y, Li YD. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal. 2018;1(10):781. https://doi.org/10.1038/s41929-018-0146-x.

    Article  CAS  Google Scholar 

  75. Hong X, Zhang L, Xu SL, Cheng ZY, Wang YZ, Goodman BA, Xiong DK, Deng W. White light luminescence in Dy/Tm co-doped yttria stabilized zirconia single crystals. J Rare Earths. 2023;41(12):1904. https://doi.org/10.1016/j.jre.2022.10.004.

    Article  CAS  Google Scholar 

  76. Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science. 2016;352(6287):801. https://doi.org/10.1126/science.aaf6123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heiz U, Sanchez A, Abbet S, Schneider WD. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J Am Chem Soc. 1999;121(13):3214. https://doi.org/10.1021/ja983616l.

    Article  CAS  Google Scholar 

  78. Zhang ZL, Zhu YH, Asakura H, Zhang B, Zhang JG, Zhou MX, Han Y, Tanaka T, Wang AQ, Zhang T, Yan N. Thermally stable single atom Pt/m–Al2O3 for selective hydrogenation and CO oxidation. Nat Commun. 2017;8(1):16100. https://doi.org/10.1038/ncomms16100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wen N, Xia YG, Wang HH, Zhang DP, Wang HM, Wang X, Jiao XL, Chen DR. Large-scale synthesis of spinel NixMn3-xO4 solid solution immobilized with iridium single atoms for efficient alkaline seawater electrolysis. Adv Sci. 2022;9(16):2200529. https://doi.org/10.1002/advs.202200529.

    Article  CAS  Google Scholar 

  80. Deng DH, Chen XQ, Yu L, Wu X, Liu QF, Liu Y, Yang HX, Tian H, Hu YF, Du PP, Si R, Wang JH, Cui XJ, Li HB, Xiao JP, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou JG, Sun LT, Li JQ, Pan XL, Bao XH. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv. 2015;1(11):e1500462. https://doi.org/10.1126/sciadv.1500462.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen XQ, Yu L, Wang S, Deng DH, Bao XH. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy. 2017;32:353. https://doi.org/10.1016/j.nanoen.2016.12.056.

    Article  CAS  Google Scholar 

  82. Cui XJ, Xiao JP, Wu YH, Du PP, Si R, Yang HX, Tian HF, Li JQ, Zhang WH, Deng DH, Bao XH. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew Chem Int Ed. 2016;55(23):6708. https://doi.org/10.1002/anie.201602097.

    Article  CAS  Google Scholar 

  83. Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, Kwak JH, Peden CHF, Kiefer B, Allard LF, Ribeiro FH, Datye AK. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun. 2014;5(1):4885. https://doi.org/10.1038/ncomms5885.

    Article  CAS  PubMed  Google Scholar 

  84. Wei SJ, Li A, Liu JC, Li Z, Chen WX, Gong Y, Zhang QH, Cheong WC, Wang Y, Zheng LR, Xiao H, Chen C, Wang DS, Peng Q, Gu L, Han XD, Li J, Li YD. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat Nano. 2018;13(9):856. https://doi.org/10.1038/s41565-018-0197-9.

    Article  CAS  Google Scholar 

  85. Li HS, Wang SS, Sawada H, Han GGD, Samuels T, Allen CS, Kirkland AI, Grossman JC, Warner JH. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. ACS Nano. 2017;11(3):3392. https://doi.org/10.1021/acsnano.7b00796.

    Article  CAS  PubMed  Google Scholar 

  86. Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, Nørskov JK, Clausen BS, Topsøe H, Lægsgaard E, Besenbacher F. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J Catal. 2007;249(2):220. https://doi.org/10.1016/j.jcat.2007.04.013.

    Article  CAS  Google Scholar 

  87. Li XN, Huang X, Xi SB, Miao S, Ding J, Cai WZ, Liu S, Yang XL, Yang HB, Gao JJ, Wang JH, Huang YQ, Zhang T, Liu B. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J Am Chem Soc. 2018;140(39):12469. https://doi.org/10.1021/jacs.8b05992.

    Article  CAS  PubMed  Google Scholar 

  88. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater. 2015;14(9):937. https://doi.org/10.1038/nmat4367.

    Article  CAS  PubMed  Google Scholar 

  89. Yang HB, Miao JW, Hung SF, Chen JZ, Tao HB, Wang XZ, Zhang LP, Chen R, Gao JJ, Chen HM, Dai LM, Liu B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv. 2016;2(4):e1501122. https://doi.org/10.1126/sciadv.1501122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fei HL, Dong JC, Arellano-Jiménez MJ, Ye GL, Kim DN, Samuel ELG, Peng ZW, Zhu Z, Qin F, Bao JM, Yacaman MJ, Ajayan PM, Chen DL, Tour JM. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun. 2015;6(1):8668. https://doi.org/10.1038/ncomms9668.

    Article  CAS  PubMed  Google Scholar 

  91. Di J, Chen C, Yang SZ, Chen SM, Duan ML, Xiong J, Zhu C, Long R, Hao W, Chi Z, Chen HL, Weng YX, Xia JX, Song L, Li SZ, Li HM, Liu Z. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat Commun. 2019;10(1):2840. https://doi.org/10.1038/s41467-019-10392-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vorobyeva E, Chen Z, Mitchell S, Leary RK, Midgley P, Thomas JM, Hauert R, Fako E, López N, Pérez-Ramírez J. Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. J Mater Chem A. 2017;5(31):16393. https://doi.org/10.1039/C7TA04607C.

    Article  CAS  Google Scholar 

  93. Li YR, Wang ZW, Xia T, Ju HX, Zhang K, Long R, Xu Q, Wang CM, Song L, Zhu JF, Jiang J, Xiong YJ. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv Mater. 2016;28(32):6959. https://doi.org/10.1002/adma.201601960.

    Article  CAS  PubMed  Google Scholar 

  94. Teng J, Peydayesh M, Lu JD, Zhou JT, Benedek P, Schäunlin RE, Mezzenga R. Amyloid-templated palladium nanoparticles for water purification by electroreduction. Oxygen-deficient WO3−x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination. Angew Chem Int Ed. 2022;61:e202116634. https://doi.org/10.1002/anie.202116634.

    Article  CAS  Google Scholar 

  95. Guan ML, Xiao C, Zhang J, Fan SJ, An R, Cheng QM, Xie JF, Zhou M, Ye BJ, Xie Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc. 2013;135(28):10411. https://doi.org/10.1021/ja402956f.

    Article  CAS  PubMed  Google Scholar 

  96. Lu XM, Song HQ, Cai JM, Lu SY. Recent development of electrochemical nitrate reduction to ammonia: a mini review. Electro Commun. 2021;129:107094. https://doi.org/10.1016/j.elecom.2021.107094.

    Article  CAS  Google Scholar 

  97. Chen ZW, Lu ZL, Chen LX, Jiang M, Chen DC, Singh CV. Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism. Chem Catal. 2021;1:183. https://doi.org/10.1016/j.checat.2021.03.003.

    Article  CAS  Google Scholar 

  98. Guo XY, Gu JX, Hu XM, Zhang SL, Chen ZF, Huang SP. Coordination tailoring towards efficient single-atom catalysts for N2 fixation: a case study of iron-nitrogen-carbon (Fe@N–C) systems. Catal Today. 2020;350:91. https://doi.org/10.1016/j.cattod.2019.06.014.

    Article  CAS  Google Scholar 

  99. Zhong WH, Liu YX, Deng MS, Zhang YC, Jia CY, Prezhdo OV, Yuan JY, Jiang J. C2N-supported single metal ion catalysts for HCOOH dehydrogenation. J Mater Chem A. 2018;6(24):11105. https://doi.org/10.1039/C8TA02299B.

    Article  CAS  Google Scholar 

  100. Li QK, Li XF, Zhang GZ, Jiang J. Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. J Am Chem Soc. 2018;140(45):15149. https://doi.org/10.1021/jacs.8b07816.

    Article  CAS  PubMed  Google Scholar 

  101. Liu GL, Robertson AW, Li MMJ, Kuo WCH, Darby MT, Muhieddine MH, Lin YC, Suenaga K, Stamatakis M, Warner JH, Tsang SCE. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat Chem. 2017;9(8):810. https://doi.org/10.1038/nchem.2740.

    Article  CAS  PubMed  Google Scholar 

  102. Lang R, Xi W, Liu JC, Cui YT, Li TB, Lee AF, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu XY, Wang AQ, Wang XD, Luo J, Qiao BT, Li J, Zhang T. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun. 2019;10(1):234. https://doi.org/10.1038/s41467-018-08136-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang ZQ, Chen YG, Zhou LQ, Chen C, Han Z, Zhang BS, Wu Q, Yang LJ, Du L, Bu YF, Wang P, Wang XZ, Yang H, Hu Z. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat Commun. 2019;10(1):1657. https://doi.org/10.1038/s41467-019-09596-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li SW, Liu JJ, Yin Z, Ren PJ, Lin LL, Gong Y, Yang C, Zheng XS, Cao RC, Yao SY, Deng YC, Liu X, Gu L, Zhou W, Zhu JF, Wen XD, Xu BJ, Ma D. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catal. 2020;10(1):907. https://doi.org/10.1021/acscatal.9b04558.

    Article  CAS  Google Scholar 

  105. Zhang HB, Liu YY, Chen T, Zhang JT, Zhang J, Lou XW. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv Mater. 2019;31(48):1904548. https://doi.org/10.1002/adma.201904548.

    Article  CAS  Google Scholar 

  106. Zhang HB, Yu L, Chen T, Zhou W, Lou XW. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv Funct Mater. 2018;28(51):1807086. https://doi.org/10.1002/adfm.201807086.

    Article  CAS  Google Scholar 

  107. Gu J, Hsu CS, Bai LC, Chen HM, Hu XL. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science. 2019;364(6445):1091. https://doi.org/10.1126/science.aaw7515.

    Article  CAS  PubMed  Google Scholar 

  108. Zhu HR, Hu YL, Wei SH, Hua DY. Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study. J Phys Chem C. 2019;123(7):4274. https://doi.org/10.1021/acs.jpcc.8b11696.

    Article  CAS  Google Scholar 

  109. Xu HD, Jiang N, Wang D, Wang LH, Song YF, Chen ZQ, Ma J, Zhang T. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways. Appl Catal B. 2020;263:118350. https://doi.org/10.1016/j.apcatb.2019.118350.

    Article  CAS  Google Scholar 

  110. Li Y, Yang T, Qiu S, Lin WQ, Yan JT, Fan SS, Zhou Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem Eng J. 2020;389:124382. https://doi.org/10.1016/j.cej.2020.124382.

    Article  CAS  Google Scholar 

  111. An SF, Zhang GH, Wang TW, Zhang WN, Li KY, Song CS, Miller JT, Miao S, Wang JH, Guo XW. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano. 2018;12(9):9441. https://doi.org/10.1021/acsnano.8b04693.

    Article  CAS  PubMed  Google Scholar 

  112. Wei YS, Zhang M, Zou RQ, Xu Q. Metal–organic framework-based catalysts with single metal sites. Chem Rev. 2020;120(21):12089. https://doi.org/10.1021/acs.chemrev.9b00757.

    Article  CAS  PubMed  Google Scholar 

  113. Wang FL, Wang YF, Feng YP, Zeng YQ, Xie ZJ, Zhang QX, Su YH, Chen P, Liu Y, Yao K, Lv WY, Liu GG. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl Catal B. 2018;221:510. https://doi.org/10.1016/j.apcatb.2017.09.055.

    Article  CAS  Google Scholar 

  114. Pan ML, Wang J, Gao GD, Chew JW. Incorporation of single cobalt active sites onto N-doped graphene for superior conductive membranes in electrochemical filtration. J Membr Sci. 2020;602:117966. https://doi.org/10.1016/j.memsci.2020.117966.

    Article  CAS  Google Scholar 

  115. Zhao ZW, Zhang W, Liu W, Li YY, Ye JY, Liang JJ, Tong MP. Single-atom silver induced amorphization of hollow tubular g-C3N4 for enhanced visible light-driven photocatalytic degradation of naproxen. Sci Total Environ. 2020;742:140642. https://doi.org/10.1016/j.scitotenv.2020.140642.

    Article  CAS  PubMed  Google Scholar 

  116. Xiao JD, Xie YB, Nawaz F, Wang YX, Du PH, Cao HB. Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl Catal B. 2016;183:417. https://doi.org/10.1016/j.apcatb.2015.11.010.

    Article  CAS  Google Scholar 

  117. Hu Q, Cao J, Yang ZH, Xiong WP, Xu ZY, Song PP, Jia MY, Zhang YR, Peng HH, Wu AS. Fabrication of Fe-doped cobalt zeolitic imidazolate framework derived from Co(OH)2 for degradation of tetracycline via peroxymonosulfate activation. Sep Purifi Technol. 2021;259:118059. https://doi.org/10.1016/j.seppur.2020.118059.

    Article  CAS  Google Scholar 

  118. Zhang HX, Lyu L, Fang Q, Hu C, Zhan SH, Li T. Cation−π structure inducing efficient peroxymonosulfate activation for pollutant degradation over atomically dispersed cobalt bonding graphene-like nanospheres. Appl Catal B. 2021;286:119912. https://doi.org/10.1016/j.apcatb.2021.119912.

    Article  CAS  Google Scholar 

  119. Chu CH, Yang J, Zhou XC, Huang DH, Qi HF, Weon S, Li JF, Elimelech M, Wang AQ, Kim JH. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environ Sci Technol. 2021;55(2):1242. https://doi.org/10.1021/acs.est.0c06086.

    Article  CAS  PubMed  Google Scholar 

  120. Chen Z, An FL, Zhang YY, Liang ZY, Liu WY, Xing MY. Single-atom Mo-Co catalyst with low biotoxicity for sustainable degradation of high-ionization-potential organic pollutants. Proc Natl Acad Sci. 2023;120(29):e2305933120. https://doi.org/10.1073/pnas.2305933120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Peng LJ, Duan XG, Shang YA, Gao BY, Xu X. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. Appl Catal B. 2021;287:119963. https://doi.org/10.1016/j.apcatb.2021.119963.

    Article  CAS  Google Scholar 

  122. Guo Z, Xie YB, Xiao JD, Zhao ZJ, Wang YX, Xu ZM, Zhang Y, Yin LC, Cao HB, Gong JL. Single-atom Mn–N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J Am Chem Soc. 2019;141(30):12005. https://doi.org/10.1021/jacs.9b04569.

    Article  CAS  PubMed  Google Scholar 

  123. Li M, Guo Q, Xing L, Yang LJ, Qi TY, Xu PY, Zhang SH, Wang LD. Cobalt-based metal-organic frameworks promoting magnesium sulfite oxidation with ultrahigh catalytic activity and stability. J Colloid Interface Sci. 2020;559:88. https://doi.org/10.1016/j.jcis.2019.10.004.

    Article  CAS  PubMed  Google Scholar 

  124. Huang LZ, Wei XL, Gao EL, Zhang CB, Hu XM, Chen YQ, Liu ZZ, Finck N, Lützenkirchen J, Dionysiou DD. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: a biomimetic approach towards efficient radical generation. Appl Catal B. 2020;268:118459. https://doi.org/10.1016/j.apcatb.2019.118459.

    Article  CAS  Google Scholar 

  125. Li XN, Yang XF, Huang YQ, Zhang T, Liu B. Supported noble-metal single atoms for heterogeneous catalysis. Adv Mat. 2019;31:1902031. https://doi.org/10.1002/adma.201902031.

    Article  CAS  Google Scholar 

  126. Abdelhaleem A, Chu W, Farzana S. Diphenamid photodegradation using Fe(III) impregnated N-doped TiO2/sulfite/visible LED process: influence of wastewater matrix, kinetic modeling, and toxicity evaluation. Chemosphere. 2020;256:127094. https://doi.org/10.1016/j.chemosphere.2020.127094.

    Article  CAS  PubMed  Google Scholar 

  127. Heck KN, Garcia-Segura S, Westerhoff P, Wong MS. Catalytic converters for water treatment. Acc Chem Res. 2019;52(4):906. https://doi.org/10.1021/acs.accounts.8b00642.

    Article  CAS  PubMed  Google Scholar 

  128. Wu XH, Kim JH. Outlook on single atom catalysts for persulfate-based advanced oxidation. ACS EST Eng. 2022;2(10):1776. https://doi.org/10.1021/acsestengg.2c00187.

    Article  CAS  Google Scholar 

  129. Burow KR, Nolan BT, Rupert MG, Dubrovsky NM. Nitrate in groundwater of the United States, 1991–2003. Environ Sci Techno. 2010;44(13):4988. https://doi.org/10.1021/es100546y.

    Article  CAS  Google Scholar 

  130. Zhao WM, Shen JD, Xu XJ, He WX, Liu L, Chen ZH, Liu J. Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom. Rare Met. 2022;41(4):1080. https://doi.org/10.1007/s12598-021-01865-3.

    Article  CAS  Google Scholar 

  131. Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599. https://doi.org/10.1016/s1470-2045(15)00444-1.

    Article  PubMed  Google Scholar 

  132. Wang MT, Hu T, Wang CH, Du F, Yang HB, Sun W, Guo CX, Li CM. Screening MXene-based single-atom catalysts for selective nitrate-to-ammonia electroreduction. Sci China Mater. 2023;66:2750. https://doi.org/10.1007/s40843-022-2406-5.

    Article  CAS  Google Scholar 

  133. Wu XH, Nazemi M, Gupta S, Chismar A, Hong K, Jacobs H, Zhang WQ, Rigby K, Hedtke T, Wang QX, Stavitski E, Wong MS, Muhich C, Kim JH. Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction. ACS Catal. 2023;13(10):6804. https://doi.org/10.1021/acscatal.3c01285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen ZW, Yan JM, Jiang Q. Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods. 2019;3(6):1800291. https://doi.org/10.1002/smtd.201800291.

    Article  CAS  Google Scholar 

  135. Martínez J, Ortiz A, Ortiz I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl Catal B. 2017;207:42. https://doi.org/10.1016/j.apcatb.2017.02.016.

    Article  CAS  Google Scholar 

  136. Chen M, Wang HF, Zhao YE, Luo W, Li L, Bian ZF, Wang LJ, Jiang W, Yang JP. Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen-doped carbon coralline. Nanoscale. 2018;10(40):19023. https://doi.org/10.1039/C8NR06360E.

    Article  CAS  PubMed  Google Scholar 

  137. Shen SQ, Wang GS, Yan FF, Yuan T. Research progess in MOF derived transition metal single atomic catalysts for oxygen reduction reaction. Chin J Rare Met. 2023;47(1):1132. https://doi.org/10.13373/j.cnki.cjrm.XY22080014.

    Article  Google Scholar 

  138. Guo SJ, Heck K, Kasiraju S, Qian HF, Zhao Z, Grabow LC, Miller JT, Wong MS. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal. 2018;8(1):503. https://doi.org/10.1021/acscatal.7b01371.

    Article  CAS  Google Scholar 

  139. Wu ZY, Karamad M, Yong X, Huang QZ, Cullen DA, Zhu P, Xia C, Xiao QF, Shakouri M, Chen FY, Kim JY, Xia Y, Heck K, Hu YF, Wong MS, Li QL, Gates I, Siahrostami S, Wang HT. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun. 2021;12(1):2870. https://doi.org/10.1038/s41467-021-23115-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li PP, Jin ZY, Fang ZW, Yu GH. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energ Environ Sci. 2021;14(6):3522. https://doi.org/10.1039/D1EE00545F.

    Article  CAS  Google Scholar 

  141. Wang YJ, Yu JW, Han P, Sha J, Li T, An W, Liu J, Yang M. Advanced oxidation of bromide-containing drinking water: a balance between bromate and trihalomethane formation control. J Environ Sci. 2013;25(11):2169. https://doi.org/10.1016/S1001-0742(12)60280-0.

    Article  CAS  Google Scholar 

  142. Modestov AD, Konev DV, Antipov AE, Petrov MM, Pichugov RD, Vorotyntsev MA. Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study. Electrochim Acta. 2018;259:655. https://doi.org/10.1016/j.electacta.2017.10.199.

    Article  CAS  Google Scholar 

  143. Huang D, Rigby K, Chen WR, Wu XH, Niu JF, Stavitski E, Kim JH. Enhancing the activity of Pd ensembles on graphene by manipulating coordination environment. Proc Nat Acad Sci. 2023;120(9):e2216879120. https://doi.org/10.1073/pnas.2216879120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Doherty RE. A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: part 1—historical background; carbon tetrachloride and tetrachloroethylene. Environ Forensics. 2000;1(2):69. https://doi.org/10.1006/enfo.2000.0010.

    Article  CAS  Google Scholar 

  145. Iqbal MS, Yao ZB, Ruan YK, Iftikhar R, Hao LD, Robertson AW, Imran SM, Sun ZY. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023;42(4):1075. https://doi.org/10.1007/s12598-022-02215-7.

    Article  CAS  Google Scholar 

  146. Wu CY, Wolf WJ, Levartovsky Y, Bechtel HA, Martin MC, Toste FD, Gross E. High-spatial-resolution mapping of catalytic reactions on single particles. Nature. 2017;541(7638):511. https://doi.org/10.1038/nature20795.

    Article  CAS  PubMed  Google Scholar 

  147. Krasner SW, Lee TCF, Westerhoff P, Fischer N, Hanigan D, Karanfil T, Beita-Sandí W, Taylor-Edmonds L, Andrews RC. Granular activated carbon treatment may result in higher predicted genotoxicity in the presence of bromide. Environ Sci Technol. 2016;50(17):9583. https://doi.org/10.1021/acs.est.6b02508.

    Article  CAS  PubMed  Google Scholar 

  148. Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol. 2005;39(17):6649. https://doi.org/10.1021/es0484799.

    Article  CAS  PubMed  Google Scholar 

  149. Davie MG, Cheng HF, Hopkins GD, LeBron CA, Reinhard M. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater. Environ Sci Technol. 2008;42(23):8908. https://doi.org/10.1021/es8014919.

    Article  CAS  PubMed  Google Scholar 

  150. Ball MR, Rivera-Dones KR, Stangland E, Mavrikakis M, Dumesic JA. Hydrodechlorination of 1,2-dichloroethane on supported AgPd catalysts. J Catal. 2019;370:241. https://doi.org/10.1016/j.jcat.2018.12.019.

    Article  CAS  Google Scholar 

  151. Li N, Song XZ, Wang L, Geng XL, Wang H, Tang HY, Bian ZY. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds. ACS Appl Mater Interfaces. 2020;12(21):24019. https://doi.org/10.1021/acsami.0c05159.

    Article  CAS  PubMed  Google Scholar 

  152. Xu YH, Yao ZQ, Mao ZC, Shi MQ, Zhang XY, Cheng F, Yang HB, Tao HB, Liu B. Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Appl Catal B. 2020;277:119057. https://doi.org/10.1016/j.apcatb.2020.119057.

    Article  CAS  Google Scholar 

  153. Huang LZ, Zhang YF, Hu XM, Hansen HCB, Pedersen SU, Daasbjerg K. Energy-harvesting bio-electro-dehalogenation for sustainable wastewater treatment. Electrochim Acta. 2018;290:38. https://doi.org/10.1016/j.electacta.2018.09.056.

    Article  CAS  Google Scholar 

  154. Long X, Chen WQ, Lei C, Xie QQ, Zhang FZ, Huang BB. Ultrafine Pd nanoparticles@g-C3N4 for highly efficient dehalogenation of chlorinated environmental pollutant: structure, efficacy and mechanisms. Sci Total Environ. 2021;775:145178. https://doi.org/10.1016/j.scitotenv.2021.145178.

    Article  CAS  Google Scholar 

  155. Huang DH, Vera GAD, Chu CH, Zhu QH, Stavitski E, Mao J, Xin HL, Spies JA, Schmuttenmaer CA, Niu JF, Haller GL, Kim JH. Single-atom Pt catalyst for effective C–F bond activation via hydrodefluorination. ACS Catal. 2018;8(10):9353. https://doi.org/10.1021/acscatal.8b02660.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52200055), the Natural Science Foundation of Jiangsu Province (No. BK20210483), China Postdoctoral Science Foundation (No. 2022T150271) and the Natural Science Research of Jiangsu Higher Education Institutions of China (No. 23KJB610001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Xu or Guo-Shuai Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, J., Xu, JH., Sun, WX. et al. Single-atom catalysis for advanced oxidation and reduction systems in water decontamination. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02709-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02709-6

Keywords

Navigation