Skip to main content
Log in

Improvement in hydrogen storage performance of MgH2 by vanadium doped with ZIF-8 derived a single-atom catalyst V–N–C

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Herein, the successful preparation of a single-atom catalyst V–N–C using vanadium-doped zeolitic imidazolate framework (ZIF)-8 as a precursor is reported. The experimental results showed that the V–N–C had a good promoting effect on the hydrogen storage performance of MgH2, and the optimal addition amount of V–N–C was 10 wt%. The hydrogenation and dehydrogenation apparent activation energies of 10 wt% V–N–C-catalyzed MgH2 were reduced by 44.9 and 53.5 kJ·mol−1, respectively, compared to those of additive-free MgH2. The 10 wt% V–N–C-catalyzed MgH2 could reabsorb 5.92 wt% of hydrogen in 50 min at 150 °C, with a capacity retention rate of 99.1% after 30 cycles of hydrogen absorption and desorption. Mechanism analysis showed that V–N–C was partially transformed into VN and metallic V when it was milled with MgH2; the in-situ-formed VN and metallic V played an important role in improving the hydrogen storage performance of MgH2. This approach provides a potential solution for obtaining high-performance Mg-based hydrogen storage materials through synergistic interactions between V, N and C.

Graphical abstract

摘要

本文报道了以掺钒ZIF-8为前驱体成功制备单原子催化剂V-N-C的案例。实验结果表明,V-N-C对MgH2的储氢性能有较好的促进作用,V-N-C的最佳添加量为10 wt%。与无添加剂MgH2相比,10 wt% V-N-C催化的MgH2的加氢和脱氢表观活化能分别降低了44.9和53.5 kJ•mol−1。10 wt% V-N-C催化的MgH2在150 °C下可在50 min内重吸收5.92 wt%的氢,吸氢和解吸30次循环后的容量保持率为99.1%。机理分析表明,V-N-C在与MgH2研磨时部分转化为VN和金属V;原位形成的VN和金属V对提高MgH2的储氢性能起着重要作用。该方法为通过V、N和C之间的协同相互作用获得高性能Mg基储氢材料提供了一种潜在的解决方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen M, Xiao XZ, Zhang M, Mao JF, Zheng JG, Liu MJ, Wang XC, Chen LX. Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2. Mater Today Energy. 2020;16:100411. https://doi.org/10.1016/j.mtener.2020.100411.

    Article  Google Scholar 

  2. Ding Z, Li YT, Yang H, Lu YF, Tan J, Li JB, Li Q, Chen YA, Shaw LL, Pan FS. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J Magnes Alloys. 2022;10(11):2946. https://doi.org/10.1016/j.jma.2022.09.028.

    Article  CAS  Google Scholar 

  3. Jain IP. Hydrogen the fuel for 21st century. Int J Hydrogen Energy. 2009;34(17):7368. https://doi.org/10.1016/j.ijhydene.2009.05.093.

    Article  CAS  Google Scholar 

  4. Li YH, Zhang QY, Ren L, Li Z, Lin X, Ma ZW, Yang HY, Hu ZG, Zou JX. Core–shell nanostructured magnesium-based hydrogen storage materials: a critical review. Ind Chem Mater. 2023;1(3):282. https://doi.org/10.1039/d3im00061c.

    Article  CAS  Google Scholar 

  5. Liu GH, Wang LX, Hu Yi WT, Sun CH, Leng HY, Li Q, Wu CZ. Enhanced catalytic effect of TiO2@rGO synthesized by one-pot ethylene glycol-assisted solvothermal method for MgH2. J Alloys Compd. 2021;881:160644. https://doi.org/10.1016/j.jallcom.2021.160644.

    Article  CAS  Google Scholar 

  6. Rahman MHA, Shamsudin MA, Klimkowicz A, Uematsu S, Takasaki A. Effects of KNbO3 catalyst on hydrogen sorption kinetics of MgH2. Int J Hydrogen Energy. 2019;44(55):29196. https://doi.org/10.1016/j.ijhydene.2019.02.186.

    Article  CAS  Google Scholar 

  7. Ren L, Zhu W, Li YH, Lin X, Xu H, Sun FZ, Lu C, Zou JX. Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 2022;14(1):144. https://doi.org/10.1007/s40820-022-00891-9.

    Article  CAS  Google Scholar 

  8. Zhang X, Leng ZH, Gao MX, Hu JJ, Du F, Yao JH, Pan HG, Liu YF. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J Power Sour. 2018;398:183. https://doi.org/10.1016/j.jpowsour.2018.07.072.

    Article  CAS  Google Scholar 

  9. Tian GB, Wu FY, Zhang HY, Wei J, Zhao H, Zhang LT. Boosting the hydrogen storage performance of MgH2 by vanadium based complex oxides. J Phys Chem Solids. 2023;174:111187. https://doi.org/10.1016/j.jpcs.2022.111187.

    Article  CAS  Google Scholar 

  10. Jain IP, Lal C, Jain A. Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy. 2010;35(10):5133. https://doi.org/10.1016/j.ijhydene.2009.08.088.

    Article  CAS  Google Scholar 

  11. Ma ZW, Panda S, Zhang QY, Sun FZ, Khan D, Ding WZ, Zou JX. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem Eng J. 2021;406:126790. https://doi.org/10.1016/j.cej.2020.126790.

    Article  CAS  Google Scholar 

  12. Li ZN, Qiu HC, Wang SM, Jiang LJ, Du J, Zhang JX, Latroche M, Cuevas F. Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture. Rare Met. 2022;41(12):4223. https://doi.org/10.1007/s12598-015-0674-3.

    Article  CAS  Google Scholar 

  13. Zhu W, Ren L, Lu C, Xu H, Sun FZ, Ma ZW, Zou JX. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano. 2021;15(11):18494. https://doi.org/10.1021/acsnano.1c08343.

    Article  CAS  PubMed  Google Scholar 

  14. Ren L, Li YH, Zhang N, Li Z, Lin X, Zhu W, Lu C, Ding WJ, Zou JX. Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 2023;15(1):93. https://doi.org/10.1007/s40820-023-01041-5.

    Article  CAS  Google Scholar 

  15. Liu T, Ma XJ, Chen CG, Xu L, Li XG. Catalytic effect of Nb nanoparticles for improving the hydrogen storage properties of Mg-based nanocomposite. J Phys Chem C. 2015;119(25):14029. https://doi.org/10.1021/acs.jpcc.5b03442.

    Article  CAS  Google Scholar 

  16. Yang XL, Hou QH, Yu LB, Zhang JQ. Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite. Dalton Trans. 2021;50(5):1797. https://doi.org/10.1039/D0DT03627G.

    Article  CAS  PubMed  Google Scholar 

  17. Li Q, Chou KC, Lin Q, Jiang LJ, Zhan F. Hydriding kinetics of the La1.5 Ni0.5Mg17–H system prepared by mechanical alloying. J Mater Sci. 2004;39:6987.

    Article  CAS  Google Scholar 

  18. Shao HY, Xu HR, Wang YT, Li XG. Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale. J Solid State Chem. 2004;177(10):3626. https://doi.org/10.1016/j.jssc.2004.05.003.

    Article  CAS  Google Scholar 

  19. Shao H, Felderhoff M, Schüth F, Weidenthaler C. Nanostructured Ti-catalyzed MgH2 for hydrogen storage. Nanotechnology. 2011;22(23):235401. https://doi.org/10.1016/j.ijhydene.2009.08.088.

    Article  CAS  PubMed  Google Scholar 

  20. Dan L, Hu L, Wang H, Zhu M. Excellent catalysis of MoO3 on the hydrogen sorption of MgH2. Int J Hydrogen Energy. 2019;44(55):29249. https://doi.org/10.1016/j.ijhydene.2019.01.285.

    Article  CAS  Google Scholar 

  21. Zhang M, Xiao XZ, Hang ZM, Chen M, Wang XC, Zhang N, Chen L. Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride. Int J Hydrogen Energy. 2021;46(1):814. https://doi.org/10.1016/j.ijhydene.2020.09.173.

    Article  CAS  Google Scholar 

  22. Fu YK, Yu ZC, Guo SY, Li Y, Peng QM, Zhang L, Wu SK, Han SM. Catalytic effect of bamboo-like carbon nanotubes loaded with NiFe nanoparticles on hydrogen storage properties of MgH2. Chem Eng J. 2023;458:141337. https://doi.org/10.1016/j.cej.2023.141337.

    Article  CAS  Google Scholar 

  23. Lan ZQ, Fu H, Zhao RL, Liu HZ, Zhou WZ, Ning H, Guo J. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem Eng J. 2022;431:133985. https://doi.org/10.1016/j.cej.2021.133985.

    Article  CAS  Google Scholar 

  24. Wang K, Zhang X, Ren ZH, Zhang XL, Hu JJ, Gao MX, Pan HG, Liu YF. Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Stor Mater. 2019;23:79. https://doi.org/10.1016/j.ensm.2019.05.029.

    Article  Google Scholar 

  25. Zhang LT, Nyahuma FM, Zhang HY, Cheng CS, Zheng JG, Wu FY, Chen LX. Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2. Green Energy Environ. 2023;8(2):589. https://doi.org/10.1016/j.gee.2021.09.004.

    Article  CAS  Google Scholar 

  26. Oelerich W, Klassen T, Bormann R. Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. J Alloys Compd. 2001;322(1–2):L5. https://doi.org/10.1016/S0925-8388(01)01173-2.

    Article  CAS  Google Scholar 

  27. Fu HF, Hu J, Lu YF, Li XM, Chen Y, Pan FS. Synergistic effect of a facilely synthesized MnV2O6 catalyst on improving the low-temperature kinetic properties of MgH2. ACS Appl Mater Interfaces. 2022;14(29):33161. https://doi.org/10.1021/acsami.2c06642.

    Article  CAS  Google Scholar 

  28. Meng Y, Ju SL, Chen W, Chen XW, Xia GL, Sun DL, Yu XB. Design of bifunctional Nb/V interfaces for improving reversible hydrogen storage performance of MgH2. Small Struct. 2022;3(10):2200119. https://doi.org/10.1002/sstr.202200119.

    Article  CAS  Google Scholar 

  29. Wang ZY, Ren ZH, Jian N, Gao MX, Hu JJ, Du F, Pan HG, Liu YF. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J Mater Chem A. 2018;6(33):16177. https://doi.org/10.1039/c8ta05437a.

    Article  CAS  Google Scholar 

  30. Lan ZQ, Hong FF, Shi WT, Zhao RL, Li RH, Fan Y, Liu HZ, Zhou WZ, Ning H, Guo J. Effect of MOF-derived carbon–nitrogen nanosheets co-doped with nickel and titanium dioxide nanoparticles on hydrogen storage performance of MgH2. Chem Eng J. 2023. https://doi.org/10.1016/j.cej.2023.143692.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang Y, An C, Zhang QY, Zang L, Shao HX, Liu YF, Zhang Y, Yuan HT, Wang CY, Wang YJ. Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage. Nano Energy. 2021;80:105535. https://doi.org/10.1016/j.nanoen.2020.105535.

    Article  CAS  Google Scholar 

  32. Ren L, Zhu W, Zhang QY, Lu C, Sun FZ, Lin X, Zou JX. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem Eng J. 2022;434:134701. https://doi.org/10.1016/j.cej.2022.134701.

    Article  CAS  Google Scholar 

  33. Zhang XL, Zhang X, Zhang LC, Huang ZG, Fang F, Yang YX, Gao MX, Pan HG, Liu YF. Remarkable low-temperature hydrogen cycling kinetics of Mg enabled by VHx nanoparticles. J Mater Sci Technol. 2023;144:168. https://doi.org/10.1016/j.jmst.2022.10.029.

    Article  CAS  Google Scholar 

  34. Shen SQ, Wang GS, Yan FF, Yuan T. Research progress in MOF derived transition metal single atomic catalysts for oxygen reduction reaction. Chin J Rare Met. 2023;47(1):28. https://doi.org/10.13373/j.cnki.cjrm.XY22080014.

    Google Scholar 

  35. Li LF, Wen YD, Han GK, Liu YX, Song YJ, Zhang W, Sun J, Du L, Kong FP, Ma YL. Tailoring the stability of Fe–N–C via pyridinic nitrogen for acid oxygen reduction reaction. Chem Eng J. 2022;437:135320. https://doi.org/10.1016/j.cej.2022.135320.

    Article  CAS  Google Scholar 

  36. Li XX, Yan YY, Zheng XN, Yao Y, Liu Y. Atomically dispersed V–N–C catalyst with saturated coordination effect for boosting electrochemical oxygen reduction. Chem Eng J. 2022;444:136363. https://doi.org/10.1016/j.cej.2022.136363.

    Article  CAS  Google Scholar 

  37. Wang L, Wang T, Cheng GJ, Li XB, Wei JJ, Guo B, Zheng CJ, Chen GY, Ran C, Zheng C. Direct C–H arylation of aldehydes by merging photocatalyzed hydrogen atom transfer with palladium catalysis. ACS Catal. 2020;10(14):7543. https://doi.org/10.1021/acscatal.0c02105.

    Article  CAS  Google Scholar 

  38. He XH, He Q, Deng YC, Peng M, Chen HY, Zhang Y, Yao SY, Zhang MT, Xiao DQ, Ma D. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat Commun. 2019;10(1):3663. https://doi.org/10.1038/s41467-019-11619-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deng X, Zheng XD, Gong ZW, Tan WY, Pei XD. Research progress on single metal atom catalysts for hydrogen production by PEM water electrolysis with lower costs. Chin J Rare Met. 2023;47(1):43. https://doi.org/10.13373/j.cnki.cjrm.XY22060014.

    Google Scholar 

  40. Ma YF, Chi BL, Liu W, Cao LN, Lin Y, Zhang XH, Ye XX, Wei SQ, Lu JL. Tailoring of the proximity of platinum single atoms on CeO2 using phosphorus boosts the hydrogenation activity. ACS Catal. 2019;9(9):8404. https://doi.org/10.1021/acscatal.9b01536.

    Article  CAS  Google Scholar 

  41. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  42. Wang AQ, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2(6):65.

    Article  CAS  Google Scholar 

  43. Wang K, Deng QB. Constructing core-shell Co@N-rich carbon additives toward enhanced hydrogen storage performance of magnesium hydride. Front Chem. 2020;8:223. https://doi.org/10.3389/fchem.2020.00223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang LT, Ji L, Yao ZD, Cai ZL, Sun Z, Yan NH, Zhu XQ. Improved hydrogen storage properties of MgH2 by the addition of TiCN and its catalytic mechanism. SN Appl Sci. 2019;1(1):101. https://doi.org/10.1007/s42452-018-0093-9.

    Article  CAS  Google Scholar 

  45. Feng LL, Feng L, Huang JF, Cao LY, Kajiyoshi K. Ultrafine VN nanoparticles confined in Co@N-doped carbon nanotubes for boosted hydrogen evolution reaction. J Alloys Compd. 2021. https://doi.org/10.1016/j.jallcom.2020.157257.

    Article  Google Scholar 

  46. Song N, Xi BJ, Wang P, Ma XJ, Chen WH, Feng JK, Xiong SL. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries. Nano Res. 2021;15(2):1424. https://doi.org/10.1007/s12274-021-3681-8.

    Article  CAS  Google Scholar 

  47. Xu L, Wu SQ, He XY, Wang H, Deng DJ, Wu JC, Li HN. Interface engineering of anti-perovskite Ni3FeN/VN heterostructure for high-performance rechargeable zinc–air batteries. Chem Eng J. 2022;437:135291. https://doi.org/10.1016/j.cej.2022.135291.

    Article  CAS  Google Scholar 

  48. Peng L, Peng HR, Hung CT, Guo DY, Duan LL, Ma B, Liu LL, Li W, Zhao DY. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem. 2021;7(4):1020. https://doi.org/10.1016/j.chempr.2021.01.001.

    Article  CAS  Google Scholar 

  49. Wang P, Wang ZX, Tian ZH, Xia CQ, Yang T, Liang CY, Li Q. Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: the catalytic effect of in-situ formed MgS and Mg2NiH4 phases. Renew Energ. 2020;160:409. https://doi.org/10.1016/j.renene.2020.07.014.

    Article  CAS  Google Scholar 

  50. Ali NA, Yahya MS, Sazelee N, Din MFM, Ismail M. Influence of nanosized CoTiO3 synthesized via a solid-state method on the hydrogen storage behavior of MgH2. Nanomaterials. 2022;12(17):3043. https://doi.org/10.3390/nano12173043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu YK, Zhang L, Li Y, Guo SY, Yu H, Wang WF, Ren KL, Zhang W, Han SM. Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2. J Magnes Alloy. 2023;11(8):2927. https://doi.org/10.1016/j.jma.2021.11.033.

    Article  CAS  Google Scholar 

  52. Zang JH, Wang SF, Wang F, Long ZY, Mo FJ, Xia YH, Fang F, Song Y, Sun DL. Li-triggered superior catalytic activity of V in Li3VO4: enabling fast and full hydrogenation of Mg at lower temperatures. J Mater Chem A. 2020;8(30):14935. https://doi.org/10.1039/d0ta03824e.

    Article  CAS  Google Scholar 

  53. Yahya MS, Ismail M. Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2. J Energy Chem. 2019;28:46. https://doi.org/10.1016/j.jechem.2017.10.020.

    Article  Google Scholar 

  54. Peng DD, Zhang Y, Han SM. Fabrication of multiple-phase magnesium-based hydrides with enhanced hydrogen storage properties by activating NiS@C and Mg powder. ACS Sustain Chem Eng. 2021;9(2):998. https://doi.org/10.1021/acssuschemeng.0c08507.

    Article  CAS  Google Scholar 

  55. Valentoni A, Mulas G, Enzo S, Garroni S. Remarkable hydrogen storage properties of MgH2 doped with VNbO5. Phys Chem Chem Phys. 2018;20(6):4100. https://doi.org/10.1039/C7CP07157D.

    Article  CAS  PubMed  Google Scholar 

  56. Gao HG, Shi R, Shao YT, Liu YN, Zhu YF, Zhang JG, Li LQ. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. Int J Hydrogen Energy. 2022;47(15):9346. https://doi.org/10.1016/j.ijhydene.2022.01.020.

    Article  CAS  Google Scholar 

  57. Zeng L, Lan ZQ, Li BB, Liang HR, Wen XB, Huang XT, Tan J, Liu HZ, Zhou WZ, Guo J. Facile synthesis of a Ni3S2@C composite using cation exchange resin as an efficient catalyst to improve the kinetic properties of MgH2. J Magnes Alloys. 2022;10(12):3628. https://doi.org/10.1016/j.jma.2021.03.013.

    Article  CAS  Google Scholar 

  58. Lu CL, Liu HZ, Xu L, Luo H, He SX, Duan XQ, Huang XT, Wang XH, Lan ZQ, Guo J. Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride. J Magnes Alloys. 2022;10(4):1051. https://doi.org/10.1016/j.jma.2021.03.030.

    Article  CAS  Google Scholar 

  59. Wen XB, Liang HR, Zhao RL, Hong FF, Shi WT, Liu HZ, Chen HQ, Zhou WZ, Guo J, Lan ZQ. Regulation of the integrated hydrogen storage properties of magnesium hydride using 3D self-assembled amorphous carbon-embedded porous niobium pentoxide. J Mater Chem A. 2022;10(32):16941. https://doi.org/10.1039/D2TA04700D.

    Article  CAS  Google Scholar 

  60. Yao PP, Jiang Y, Liu Y, Wu CZ, Chou KC, Lyu T, Li Q. Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2. J Mater Chem A. 2020;8(2):461. https://doi.org/10.1016/j.jma.2019.06.006.

    Article  CAS  Google Scholar 

  61. Shao HX, Huang YK, Guo HN, Liu YF, Guo YS, Wang YJ. Thermally stable Ni MOF catalyzed MgH2 for hydrogen storage. Int J Hydrogen Energy. 2021;46(76):37977. https://doi.org/10.1016/j.ijhydene.2021.09.045.

    Article  CAS  Google Scholar 

  62. Lan ZQ, Wen XB, Zeng L, Luo ZQ, Liang HR, Shi WT, Hong FF, Liu HZ, Ning H, Zhou WZ, Guo J. In situ incorporation of highly dispered nickel and vanadium trioxide nanoparticles in nanoporous carbon for the hydrogen storage performance enhancement of magnesium hydride. Chem Eng J. 2022;446(3):137261. https://doi.org/10.1016/j.cej.2022.137261.

    Article  CAS  Google Scholar 

  63. Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Yuan ZF, Zhang LT. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met. 2021;40(11):319. https://doi.org/10.1007/s12598-021-01764-7

    Article  Google Scholar 

  64. Liu YN, Gao HG, Zhu YF, Li SY, Zhang JG, Li LQ. Excellent catalytic activity of a two-dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Appl Surf Sci. 2019;493:431. https://doi.org/10.1016/j.apsusc.2019.07.037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52261038 and 51861002) and Nanning Excellent Young Talents Cultivation Project of Scientific and Technological Innovation and Entrepreneurship (No. RC20220102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Fan or Zhi-Qiang Lan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 400 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, FF., Shi, WT., Zhao, RL. et al. Improvement in hydrogen storage performance of MgH2 by vanadium doped with ZIF-8 derived a single-atom catalyst V–N–C. Rare Met. 43, 2623–2635 (2024). https://doi.org/10.1007/s12598-024-02639-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02639-3

Keywords

Navigation