Skip to main content
Log in

Recent advances in bioinspired vision systems with curved imaging structures

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Limited by the planar imaging structure, the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor. This results in a complex and bulky structure. In contrast, biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane. Inspired by the structures and functions of biological eyes, curved vision systems not only improve the image quality, but also offer a variety of advanced functions. Here, we review the recent advances in bioinspired vision systems with curved imaging structures. Specifically, we focus on their applications in implementing different functions of biological eyes, as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies. In addition, the challenges and opportunities of bioinspired curved imaging systems are also discussed.

Graphical abstract

摘要

受平面成像结构的限制, 商用相机需要引入额外的光学元件来补偿弯曲的焦平面, 导致了相机结构的复杂化。相比之下, 生物眼睛具有曲面的成像结构, 可以直接与弯曲的焦平面匹配, 因此具有简单紧凑的结构。受生物眼睛结构和功能的启发, 曲面视觉系统不但提高了图像质量, 而且具备各种独特的功能。在这里, 我们回顾了生物启发的具有曲面成像结构的视觉系统的最新进展。具体来说, 我们重点关注了它们在实现生物眼睛不同功能方面的应用, 以及结合生物启发光学和神经形态处理技术的新兴曲面神经形态成像系统。此外, 还讨论了生物启发的曲面成像系统面临的挑战和机遇。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [29]. Copyright 2013, Cambridge University Press. b Schematic illustration of chambered eye (human eye, left; aquatic eye, right); c schematic illustration of compound eye (apposition compound eye, left; superposition eye, right). Reproduced with permission from Ref. [31]. Copyright 2021, Elsevier. Reproduced with permission from Ref. [34]. Copyright 2014, Institute of Zoology, Chinese Academy of Sciences. d Schematic representation of retinal cells. Reproduced with permission from Ref. [45]. Copyright 2014, Nature Publishing Group

Fig. 2

Reproduced with permission from Ref. [61]. Copyright 2020, Nature Publishing Group. e Schematic illustration of wide field of view of fish eyes; f structure of aquatic inspired camera; g Seidel aberration coefficients of wide-angle multi-lens, homogeneous ball lens, and monocentric lens; h quantitative test results of FOV imaging with a cross pattern composed of spots and (inset) original image of cross spot. Reproduced with permission from Ref. [56]. Copyright 2020, Nature Publishing Group. i Schematic illustration of structure of Xenos Peckii-inspired camera; j optical image of bioinspired camera and (inset) SEM images of concave microprism arrays after filling with black polymer; k schematic diagram of experimental setup for FOV testing and images at three different angles of incidence. Reproduced with permission from Ref. [68]. Copyright 2018, Nature Publishing Group

Fig. 3

Reproduced with permission from Ref. [57]. Copyright 2013, Nature Publishing Group. d Optical image of artificial vision system; e top view (left) and side view (right) of pixel distribution on 3D structure; f imaging results of FOV with three sequential illuminations of six collimated laser beams. Reproduced with permission from Ref. [58]. Copyright 2022, Nature Publishing Group. g Schematic illustration of a folding polygon block made up of pentagons and hexagons into a hemisphere; h schematic illustration of convex hemispherical artificial camera based on origami structure and (inset) optical figure of planar device; i image of laser spot obtained from convex artificial camera. Reproduced with permission from Ref. [59]. Copyright 2017, Nature Publishing Group

Fig. 4

Reproduced with permission from Ref. [60]. Copyright 2021, Nature Publishing Group

Fig. 5

Reproduced with permission from Ref. [56]. Copyright 2020, Nature Publishing Group. e Schematic illustration of variable-focus compound eye; f relationship between focal length and chamber volume of main lens; g schematic illustration of experimental setup for zoom imaging with masks “K” and “S” at different positions; h images captured by bioinspired zoom compound eyes as volume of cavity increases. Reproduced with permission from Ref. [67]. Copyright 2020, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [57]. Copyright 2013, Nature Publishing Group. c Schematic diagram of structure of SCECam; d images captured by SCECam with objects located at different distances. Reproduced with permission from Ref. [69]. Copyright 2017, Optical Society of America. e Focal lengths for objects at various distances, focused by monocentric lens; f optical photo of bioinspired camera and (inset) h-SiNR-PDA; g imaging demonstration for a triangle (Object 1) and square (Object 2) located at different distances (do,1 = 20 cm and do,2 = 30 cm) and at different angles with a 90° difference, where image is captured with di,far = 2.95 mm. Reproduced with permission from Ref. [56]. Copyright 2020, Nature Publishing Group

Fig. 7

Reproduced with permission from Ref. [70]. Copyright 2021, Nature Publishing Group. e Schematic diagram of experimental setup for monitoring beetle motion with μ-CE camera; f images of a free-crawling beetle at different time; g images obtained by μ-CE camera at different time; h schematic diagram of principle for 3D reconstruction by a μ-CE camera; i 3D reconstruction of paramecium motion trajectory. Reproduced with permission from Ref. [71]. Copyright 2022, Nature Publishing Group

Fig. 8

Reproduced with permission from Ref. [115]. Copyright 2008, Humana Press, a part of Springer Science Business Media. Reproduced with permission from Ref. [116]. Copyright 2022, Royal Society. b SEM image of planar device protruded into hemispherical shape and (inset) enlarged SEM image; c strain-dependent photoresponsivities under different incident light; d image of letter “E” captured by curved imager with 1.19% strain at 785 nm incident light. Reproduced with permission from Ref. [62]. Copyright 2021, American Chemical Society. e Structure diagram of flexible device; f normalized optical absorption spectra of original DPPT-TT, N2200, and DPPT-TT: N2200 (1:1) films coated on quartz substrates; g photosensitivity (P), responsivity (R) as a function of VG, according to same light intensities (0.038 mW·cm−2, 808 nm) under two different conditions (DPPT-TT: N2200 and pristine DPPT-TT); h image (letter “H”) captured by bioinspired camera and its projection on flat plane. Reproduced with permission from Ref. [63]. Copyright 2022, Wiley–VCH. i Schematic diagram of structure of a hemispherical photodetector; j narrow-band response (EQE) of perovskites photodetectors with different halogen ratios (PEA2FA3Pb4I13-xBrx, x = 1, 5, 8, 13); k (left) schematic representation of an experimental setup for color imaging, and (right) images obtained by hemispherical photodetectors with different I/Br ratios. Reproduced with permission from Ref. [64]. Copyright 2022, Nature Publishing Group

Fig. 9

Reproduced with permission from Ref. [65]. Copyright 2022, Nature Publishing Group

Fig. 10

Reproduced with permission from Ref. [66]. Copyright 2023, Nature Publishing Group

Fig. 11

Reproduced with permission from Ref. [43]. Copyright 2013, Wiley–VCH. b Schematic diagram of structure of ommatidium; c change of RI and RoC with number of layers in concavely and convexly curved multilayer structure; d ray-tracing optical simulation results of microlens with concave multilayers with graded RI (left), convex multilayers with graded RI (center), and typical microlens with a homogeneous RI (right) under dry and wet conditions; e structure of artificial (right) ommatidium and corresponding structure of biological ommatidium; f magnified cross-section view of g-ML; g schematic representation of experimental setup for amphibious imaging; h amphibious imaging results captured by artificial vision system. Reproduced with permission from Ref. [58]. Copyright 2022, Nature Publishing Group

Fig. 12

Reproduced with permission from Ref. [129]. Copyright 2020, Nature Publishing Group. h Schematic illustration of structure of bioinspired eye; i images captured by bioinspired eye under 10 and 100 s illumination. Reproduced with permission from Ref. [130]. Copyright 2021, Wiley–VCH

Fig. 13

Reproduced with permission from Ref. [141]. Copyright 2023, Wiley–VCH

Similar content being viewed by others

References

  1. Li PF, Fang Q, Wu YZ, Ji HL. Review of Subjective evaluation method of high-quality TV images. In: SID Symposium Digest of Technical Papers. 2022;53 Suppl 1:142. https://doi.org/10.1002/sdtp.15873

  2. Atchison DA, Smith G. Optics of the Human Eye. Oxford: Butterworth-Heinemann Oxford; 2000. 25.

    Google Scholar 

  3. Fernald RD. Casting a genetic light on the evolution of eyes. Science. 2006;313(5795):1914. https://doi.org/10.1126/science.1127889.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Land MF. The optics of animal eyes. Contemp Phys. 1988;29(5):435. https://doi.org/10.1080/00107518808222601.

    Article  ADS  Google Scholar 

  5. Lakshminarayanan V, Kuppuswamy Parthasarathy M. Biomimetic optics: visual systems. J Mod Optic. 2016. https://doi.org/10.1080/09500340.2016.1224939.

    Article  Google Scholar 

  6. Bruckner A, Duparre J, Dannberg P, Brauer A, Tunnermann A. Artificial neural superposition eye. Opt Express. 2007;15(19):11922. https://doi.org/10.1364/oe.15.011922.

    Article  PubMed  ADS  Google Scholar 

  7. Duparré J, Dannberg P, Schreiber P, Bräuer A, Tünnermann A. Thin compound-eye camera. Appl Opt. 2005;44(15):2949. https://doi.org/10.1364/AO.44.002949.

    Article  PubMed  ADS  Google Scholar 

  8. Chung T, Lee Y, Yang SP, Kim K, Kang BH, Jeong KH. Mining the smartness of insect ultrastructures for advanced imaging and illumination. Adv Funct Mater. 2018;28(24):1705912. https://doi.org/10.1002/adfm.201705912.

    Article  CAS  Google Scholar 

  9. Guenter B, Joshi N, Stoakley R, Keefe A, Geary K, Freeman R, Hundley J, Patterson P, Hammon D, Herrera G, Sherman E, Nowak A, Schubert R, Brewer P, Yang L, Mott R, McKnight G. Highly curved image sensors: a practical approach for improved optical performance. Opt Express. 2017;25(12):13010. https://doi.org/10.1364/oe.25.013010.

    Article  PubMed  ADS  Google Scholar 

  10. Rim SB, Catrysse PB, Dinyari R, Huang K, Peumans P. The optical advantages of curved focal plane arrays. Opt Express. 2008;16(7):4965. https://doi.org/10.1364/OE.16.004965.

    Article  PubMed  ADS  Google Scholar 

  11. Milojkovic P, Mait JN. Space-bandwidth scaling for wide field-of-view imaging. Appl Opt. 2012;51(4):A36. https://doi.org/10.1364/ao.51.000a36.

    Article  PubMed  ADS  Google Scholar 

  12. Reshidko D, Sasian J. Optical analysis of miniature lenses with curved imaging surfaces. Appl Opt. 2015;54(28):E216. https://doi.org/10.1364/ao.54.00e216.

    Article  PubMed  ADS  Google Scholar 

  13. Stamenov I, Agurok IP, Ford JE. Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs. Appl Opt. 2012;51(31):7648. https://doi.org/10.1364/ao.51.007648.

    Article  PubMed  ADS  Google Scholar 

  14. Land MF, Nilsson DE. Animal Eyes. Oxford: OUP Oxford; 2012. 72.

    Google Scholar 

  15. Land MF. The optical structures of animal eyes. Curr Biol. 2005;15(9):R319. https://doi.org/10.1016/j.cub.2005.04.041.

    Article  CAS  PubMed  Google Scholar 

  16. Vannier J, Schoenemann B, Gillot T, Charbonnier S, Clarkson E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat Commun. 2016;7(1):10320. https://doi.org/10.1038/ncomms10320.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Howell KJ, Beston SM, Stearns S, Walsh MR. Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish. Ecol Evol. 2021;11(1):365. https://doi.org/10.1002/ece3.7051.

    Article  PubMed  Google Scholar 

  18. Xiao X, Xiao X, Lan Y, Chen J. Learning from nature for healthcare, energy, and environment. Innov. 2021;2(3):100135. https://doi.org/10.1016/j.xinn.2021.100135.

    Article  Google Scholar 

  19. Zhang ZJ, Xiao X, Zhou YH, Huang LJ, Wang YX, Rong QL, Han ZY, Qu HJ, Zhu ZJ, Xu SM, Tang JG, Chen J. Bioinspired graphene oxide membranes with ph-responsive nanochannels for high-performance nanofiltration. ACS Nano. 2021;15(8):13178. https://doi.org/10.1021/acsnano.1c02719.

    Article  CAS  PubMed  Google Scholar 

  20. Nikiforov-Nikishin DL, Irkha VA, Kochetkov NI, Kalita TL, Nikiforov-Nikishin AL, Blokhin EE, Antipov SS, Makarenkov DA, Zhavnerov AN, Glebova IA, Smorodinskaya SV, Chebotarev SN. Some aspects of development and histological structure of the visual system of Nothobranchius Guentheri. Animals.2021;11(9):2755.https://doi.org/10.3390/ani11092755.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jeong KH, Kim J, Lee LP. Biologically inspired artificial compound eyes. Science. 2006;312(5773):557. https://doi.org/10.1126/science.1123053.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Reyer RW. The Amphibian Eye: Development and Regeneration. Edited by Crescitelli F, Dvorak CA, Eder DJ, Granda AM, Hamasaki D, Holmberg K, Hughes A, Locket NA, McFarland WN, Meyer DB, Muntz WRA, Munz FW, Olson EC, Reyer RW, Crescitelli F. Berlin, Heidelberg: Springer Berlin Heidelberg 1977. 309

  23. Koretz JR, Cook CA, Kaufman PL. Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss. J Opt Soc Am A. 2002;19(1):144. https://doi.org/10.1364/josaa.19.000144.

    Article  ADS  Google Scholar 

  24. Lopez-Gil N, Fernandez-Sanchez V. The change of spherical aberration during accommodation and its effect on the accommodation response. J Vision. 2010;10(13):12. https://doi.org/10.1167/10.13.12.

    Article  Google Scholar 

  25. Rossel S. Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol. 1979;131(2):95. https://doi.org/10.1007/BF00619070.

    Article  Google Scholar 

  26. Zhou FC, Chai Y. Near-sensor and in-sensor computing. Nat Electron. 2020;3(11):664. https://doi.org/10.1038/s41928-020-00501-9.

    Article  Google Scholar 

  27. Tsai WL, Chen CY, Wen YT, Yang L, Cheng YL, Lin HW. Band tunable microcavity perovskite artificial human photoreceptors. Adv Mater. 2019;31(24):1900231. https://doi.org/10.1002/adma.201900231.

    Article  CAS  Google Scholar 

  28. Zhang ZH, Wang SY, Liu CS, Xie RZ, Hu WD, Zhou P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol. 2022;17(1):27. https://doi.org/10.1038/s41565-021-01003-1.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Nilsson DE. Eye evolution and its functional basis. Vis Neurosci. 2013;30(1–2):5. https://doi.org/10.1017/s0952523813000035.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martin KAC, Scott K. Current opinion in neurobiology—sensory systems. Curr Opin Neurobiol. 2010;20(3):271. https://doi.org/10.1016/j.conb.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  31. Gao WC, Xu ZS, Han X, Pan CF. Recent advances in curved image sensor arrays for bioinspired vision system. Nano Today. 2022;42:101366. https://doi.org/10.1016/j.nantod.2021.101366.

    Article  Google Scholar 

  32. Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system. Nat Rev Neurosci. 2009;10(5):360. https://doi.org/10.1038/nrn2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kogos LC, Li YZ, Liu JN, Li YY, Tian L, Paiella R. Plasmonic ommatidia for lensless compound-eye vision. Nat Commun. 2020;11(1):1637. https://doi.org/10.1038/s41467-020-15460-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Meyer-Rochow VB. Compound eyes of insects and crustaceans: Some examples that show there is still a lot of work left to be done. Insect Sci. 2015;22(3):461. https://doi.org/10.1111/1744-7917.12117.

    Article  PubMed  Google Scholar 

  35. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397(6719):520. https://doi.org/10.1038/17383.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Rajagopal S, Roberts RD, Lim SK. Visible light communication: modulation schemes and dimming support. IEEE Commun Mag. 2012;50(3):72. https://doi.org/10.1109/mcom.2012.6163585.

    Article  Google Scholar 

  37. Martin GR. Form and Function in the Optical Structure of Bird Eyes. In: Davies MNO, Green PR, editors. Perception and Motor Control in Birds: An Ecological Approach. Heidelberg: Springer. 1994. 1.https://doi.org/10.1007/978-3-642-75869-0_2.

    Chapter  Google Scholar 

  38. Jagger WS, Sands PJ. A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res. 1999;39(17):2841. https://doi.org/10.1016/s0042-6989(99)00012-7.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng Y, Cao J, Zhang YK, Hao Q. Review of state-of-the-art artificial compound eye imaging systems. Bioinspir Biomim. 2019;14(3):031002. https://doi.org/10.1088/1748-3190/aaffb5.

    Article  PubMed  ADS  Google Scholar 

  40. Floreano D, Zufferey JC, Srinivasan MV, Ellington C. Flying Insects and Robots. Heidelberg: Springer. 2009. 127.

    Google Scholar 

  41. Dudley R. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton: Princeton University Press. 2002. 3.

    Google Scholar 

  42. Herault J. Biologically Inspired Computer Vision: Fundamentals and Applications. Weinheim: Wiley. 2016. 111.

    Google Scholar 

  43. Alkaladi A, Zeil J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J Comp Neurol. 2014;522(6):1264. https://doi.org/10.1002/cne.23472.

    Article  PubMed  Google Scholar 

  44. Levy B, Sivak JG. Mechanisms of accommodation in the bird eye. J Comp Physiol. 1980;137(3):267. https://doi.org/10.1007/BF00657122.

    Article  Google Scholar 

  45. Euler T, Haverkamp S, Schubert T, Baden T. Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci. 2014;15(8):507. https://doi.org/10.1038/nrn3783.

    Article  CAS  PubMed  Google Scholar 

  46. Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci. 2014;15(4):250. https://doi.org/10.1038/nrn3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 2015;521(7550):61. https://doi.org/10.1038/nature14441.

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Mayer M, Xiao X, Yin JY, Chen GR, Xu J, Chen J. Advances in bioinspired triboelectric nanogenerators. Adv Electron Mater.2022;8(12):2200782.https://doi.org/10.1002/aelm.202200782.

    Article  CAS  Google Scholar 

  49. Xiao X, Yin JY, Chen GR, Shen S, Nashalian A, Chen J. Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter. 2022;5(5):1342. https://doi.org/10.1016/j.matt.2022.03.014.

    Article  CAS  Google Scholar 

  50. Zhang CH, Xiao X, Zhang YH, Liu ZX, Xiao X, Nashalian A, Wang XS, Cao MY, He XM, Chen J, Jiang L, Yu CM. Bioinspired anisotropic slippery cilia for stiffness-controllable bubble transport. ACS Nano. 2022;16(6):9348. https://doi.org/10.1021/acsnano.2c02093.

    Article  CAS  PubMed  Google Scholar 

  51. Luo Y, Xiao X, Chen J, Li Q, Fu HY. Machine-learning-assisted recognition on bioinspired soft sensor arrays. ACS Nano. 2022;16(4):6734. https://doi.org/10.1021/acsnano.2c01548.

    Article  CAS  PubMed  Google Scholar 

  52. Zan GT, Wu T, Zhang ZL, Li J, Zhou JC, Zhu F, Chen HX, Wen M, Yang XC, Peng XJ, Chen J, Wu QS. Bioinspired nanocomposites with self-adaptive stress dispersion for super-foldable electrodes. Adv Sci. 2022;9(3):2103714. https://doi.org/10.1002/advs.202103714.

    Article  CAS  Google Scholar 

  53. Zhou J, Huang H, Wang LJ, Tamaddon M, Liu CZ, Liu ZY, Yu TB, Zhang YZ. Stable mechanical fixation in a bionic osteochondral scaffold considering bone growth. Rare Met. 2022;41(8):2711. https://doi.org/10.1007/s12598-022-02000-6.

    Article  CAS  Google Scholar 

  54. Cai J, Chen HY, Li YJ, Akbarzadeh A. Lessons from nature for carbon-based nanoarchitected metamaterials. Small Sci. 2022;2(12):2200039. https://doi.org/10.1002/smsc.202200039.

    Article  CAS  Google Scholar 

  55. Wijerathne B, Liao T, Ostrikov K, Sun Z. Bioinspired robust mechanical properties for advanced materials. Small Struct. 2022;3(9):2100228. https://doi.org/10.1002/sstr.202100228.

    Article  CAS  Google Scholar 

  56. Kim M, Lee GJ, Choi C, Kim MS, Lee M, Liu S, Cho KW, Kim HM, Cho H, Choi MK, Lu N, Song YM, Kim DH. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat Electron. 2020;3(9):546. https://doi.org/10.1038/s41928-020-0429-5.

    Article  ADS  Google Scholar 

  57. Song YM, Xie YZ, Malyarchuk V, Xiao JL, Jung I, Choi KJ, Liu ZJ, Park H, Lu CF, Kim RH, Li R, Crozier KB, Huang YG, Rogers JA. Digital cameras with designs inspired by the arthropod eye. Nature. 2013;497(7447):95. https://doi.org/10.1038/nature12083.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Lee M, Lee GJ, Jang HJ, Joh E, Cho H, Kim MS, Kim HM, Kang KM, Lee JH, Kim M, Jang H, Yeo JE, Durand F, Lu N, Kim DH, Song YM. An amphibious artificial vision system with a panoramic visual field. Nat Electron. 2022;5(7):452. https://doi.org/10.1038/s41928-022-00789-9.

    Article  Google Scholar 

  59. Zhang K, Jung YH, Mikael S, Seo JH, Kim M, Mi HY, Zhou H, Xia ZY, Zhou WD, Gong SQ, Ma ZQ. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun. 2017;8(1):1782. https://doi.org/10.1038/s41467-017-01926-1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Rao ZY, Lu YT, Li ZW, Sim K, Ma ZQ, Xiao JL, Yu CJ. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat Electron. 2021;4(7):513. https://doi.org/10.1038/s41928-021-00600-1.

    Article  Google Scholar 

  61. Gu LL, Poddar S, Lin YJ, Long ZH, Zhang DQ, Zhang QP, Shu L, Qiu X, Kam M, Javey A, Fan ZY. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature. 2020;581(7808):278. https://doi.org/10.1038/s41586-020-2285-x.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Thai KY, Park I, Kim BJ, Hoang AT, Na Y, Park CU, Chae Y, Ahn JH. MoS2/Graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano. 2021;15(8):12836. https://doi.org/10.1021/acsnano.1c04678.

    Article  CAS  PubMed  Google Scholar 

  63. Yu HY, Zhao XL, Tan MY, Wang B, Zhang MX, Wang X, Guo SL, Tong YH, Tang QX, Liu YC. Ultraflexible and ultrasensitive near-infrared organic phototransistors for hemispherical biomimetic eyes. Adv Funct Mater. 2022;32(48):2206765. https://doi.org/10.1002/adfm.202206765.

    Article  CAS  Google Scholar 

  64. Feng XP, He YH, Qu W, Song JM, Pan WT, Tan MR, Yang B, Wei HT. Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging. Nat Commun. 2022;13(1):6106. https://doi.org/10.1038/s41467-022-33934-1.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Song JK, Kim J, Yoon J, Koo JH, Jung H, Kang K, Sunwoo SH, Yoo S, Chang H, Jo J, Baek W, Lee S, Lee M, Kim HJ, Shin M, Yoo YJ, Song YM, Hyeon T, Kim DH, Son D. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat Nanotechnol. 2022;17(8):849. https://doi.org/10.1038/s41565-022-01160-x.

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Long ZH, Qiu X, Chan CLJ, Sun ZB, Yuan ZN, Poddar S, Zhang YT, Ding YC, Gu LL, Zhou Y, Tang WY, Srivastava AK, Yu CJ, Zou XM, Shen GZ, Fan ZY. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat Commun. 2023;14(1):1972. https://doi.org/10.1038/s41467-023-37581-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Cao JJ, Hou ZS, Tian ZN, Hua JG, Zhang YL, Chen QD. Bioinspired zoom compound eyes enable variable-focus imaging. ACS Appl Mater Interfaces. 2020;12(9):10107. https://doi.org/10.1021/acsami.9b21008.

    Article  CAS  PubMed  Google Scholar 

  68. Keum D, Jang KW, Jeon DS, Hwang CSH, Buschbeck EK, Kim MH, Jeong KH. Xenos peckii vision inspires an ultrathin digital camera. Light Sci Appl. 2018;7(1):80. https://doi.org/10.1038/s41377-018-0081-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi CY, Wang YY, Liu CY, Wang TS, Zhang HX, Liao WX, Xu ZJ, Yu WX. SCECam: a spherical compound eye camera for fast location and recognition of objects at a large field of view. Opt Express. 2017;25(26):32333. https://doi.org/10.1364/oe.25.032333.

    Article  CAS  ADS  Google Scholar 

  70. Dai B, Zhang L, Zhao CL, Bachman H, Becker R, Mai J, Jiao Z, Li W, Zheng LL, Wan XJ, Huang TJ, Zhuang SL, Zhang D. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat Commun. 2021;12(1):6458. https://doi.org/10.1038/s41467-021-26606-z.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Hu ZY, Zhang YL, Pan C, Dou JY, Li ZZ, Tian ZN, Mao JW, Chen QD, Sun HB. Miniature optoelectronic compound eye camera. Nat Commun. 2022;13(1):5634. https://doi.org/10.1038/s41467-022-33072-8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Elbamby MS, Perfecto C, Bennis M, Doppler K. Toward low-latency and ultra-reliable virtual reality. IEEE Netw. 2018;32(2):78. https://doi.org/10.1109/MNET.2018.1700268.

    Article  Google Scholar 

  73. Lee GJ, Choi C, Kim DH, Song YM. Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Adv Funct Mater. 2018;28(24):1705202. https://doi.org/10.1002/adfm.201705202.

    Article  CAS  Google Scholar 

  74. Lee GJ, Nam WI, Song YM. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface. Opt Laser Technol. 2017;96:50. https://doi.org/10.1016/j.optlastec.2017.04.026.

    Article  ADS  Google Scholar 

  75. Jung IW, Xiao JL, Malyarchuk V, Lu CF, Li M, Liu ZJ, Yoon J, Huang YG, Rogers JA. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. P Natl Acad Sci USA. 2011;108(5):1788. https://doi.org/10.1073/pnas.1015440108.

    Article  ADS  Google Scholar 

  76. Wu T, Hamann SS, Ceballos AC, Chang CE, Solgaard O, Howe RT. Design and fabrication of silicon-tessellated structures for monocentric imagers. Microsyst Nanoeng. 2016;2(1):16019. https://doi.org/10.1038/micronano.2016.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kingslake R, Johnson RB. Lens Design Fundamentals. Oxford: Academic Press. 2009. 1.

    Google Scholar 

  78. Jagger WS. The optics of the spherical fish lens. Vision Res. 1992;32(7):1271.https://doi.org/10.1016/0042-6989(92)90222-5.

    Article  CAS  PubMed  Google Scholar 

  79. Sivak JG. Optical Variability of the Fish Lens. In: Douglas R, Djamgoz M, editors. The Visual System of Fish. Dordrecht: Springer. 1990. 1. https://doi.org/10.1007/978-94-009-0411-8_3.

    Chapter  Google Scholar 

  80. Buschbeck EK, Ehmer B, Hoy RR. Chunk versus point sampling: visual imaging in a small insect. Science. 1999;286(5442):1178.https://doi.org/10.1126/science.286.5442.1178.

    Article  CAS  PubMed  Google Scholar 

  81. Buschbeck EK, Ehmer B, Hoy RR. The unusual visual system of the Strepsiptera: external eye and neuropils. J Comp Physiol A. 2003;189(8):617. https://doi.org/10.1007/s00359-003-0443-x.

    Article  CAS  Google Scholar 

  82. Maksimovic S, Layne JE, Buschbeck EK. Behavioral evidence for within-eyelet resolution in twisted-winged insects (Strepsiptera). J Exp Biol. 2007;210(16):2819. https://doi.org/10.1242/jeb.004697.

    Article  PubMed  Google Scholar 

  83. Zhai YQ, Niu JQ, Liu JQ, Yang B. High numerical aperture imaging systems formed by integrating bionic artificial compound eyes on a CMOS sensor. Opt Mater Express. 2021;11(6):1824. https://doi.org/10.1364/ome.427623.

    Article  CAS  ADS  Google Scholar 

  84. Zhang YH, Yan Z, Nan KW, Xiao DQ, Liu YH, Luan HW, Fu HR, Wang XZ, Yang QL, Wang JC, Ren W, Si HZ, Liu F, Yang LH, Li HJ, Wang JT, Guo XL, Luo HY, Wang L, Huang YG, Rogers JA. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. P Natl Acad Sci USA. 2015;112(38):11757. https://doi.org/10.1073/pnas.1515602112.

    Article  CAS  ADS  Google Scholar 

  85. Liu WJ, Zou QS, Zheng CQ, Jin CJ. Metal-assisted transfer strategy for construction of 2D and 3D nanostructures on an elastic substrate. ACS Nano. 2019;13(1):440. https://doi.org/10.1021/acsnano.8b06623.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao HB, Li K, Han MD, Zhu F, Vazquez-Guardado A, Guo PJ, Xie ZQ, Park Y, Chen L, Wang XJ, Luan HW, Yang YY, Wang HL, Liang CM, Xue YG, Schaller RD, Chanda D, Huang YG, Zhang YH, Rogers JA. Buckling and twisting of advanced materials into morphable 3D mesostructures. P Natl Acad Sci Usa.2019;116(27):13239.https://doi.org/10.1073/pnas.1901193116.

    Article  CAS  ADS  Google Scholar 

  87. Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan JA, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T-i, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun PV, Huang Y, Paik U, Rogers JA. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun. 2013;4(1):1543. https://doi.org/10.1038/ncomms2553.

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Chen YC, Lu YJ, Liao MY, Tian YZ, Liu Q, Gao CJ, Yang X, Shan CX. 3D Solar-blind Ga2O3 photodetector array realized via origami method. Adv Funct Mater. 2019;29(50):1906040. https://doi.org/10.1002/adfm.201906040.

    Article  CAS  Google Scholar 

  89. Lee W, Liu Y, Lee Y, Sharma BK, Shinde SM, Kim SD, Nan K, Yan Z, Han M, Huang Y, Zhang Y, Ahn JH, Rogers JA. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat Commun. 2018;9(1):1417. https://doi.org/10.1038/s41467-018-03870-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Choi C, Choi MK, Liu S, Kim M, Park OK, Im C, Kim J, Qin X, Lee GJ, Cho KW, Kim M, Joh E, Lee J, Son D, Kwon SH, Jeon NL, Song YM, Lu N, Kim DH. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun. 2017;8(1):1664. https://doi.org/10.1038/s41467-017-01824-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Li JF, Liu ZG. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics. 2018;7(10):1637. https://doi.org/10.1515/nanoph-2018-0117.

    Article  CAS  Google Scholar 

  92. Grosso BF, Mele EJ. Bending rules in graphene kirigami. Phys Rev Lett.2015;115(19):195501.https://doi.org/10.1103/PhysRevLett.115.195501.

    Article  CAS  PubMed  ADS  Google Scholar 

  93. Castle T, Cho Y, Gong X, Jung E, Sussman DM, Yang S, Kamien RD. Making the cut: lattice kirigami rules. Phys Rev Lett. 2014;113(24):245502.

    Article  PubMed  ADS  Google Scholar 

  94. Han X, Seo KJ, Qiang Y, Li ZP, Vinnikova S, Zhong YD, Zhao XY, Hao PJ, Wang SD, Fang H. Nanomeshed Si nanomembranes. npj Flex Electron. 2019;3(1):9. https://doi.org/10.1038/s41528-019-0053-5.

    Article  CAS  Google Scholar 

  95. Liu SJ, Li L, Hao YP, Diao XL, Liu FL. Optimization of positioning technology of aspheric compound eyes with variable focal length. AIP Adv. 2019;9(1):015133. https://doi.org/10.1063/1.5032268.

    Article  ADS  Google Scholar 

  96. Li L, Hao YP, Xu JL, Liu FL, Lu J. The design and positioning method of a flexible zoom artificial compound eye. Micromachines. 2018;9(7):319. https://doi.org/10.3390/mi9070319.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Luan SY, Cao H, Deng HF, Zheng GX, Song Y, Gui CQ. Artificial hyper compound eyes enable variable-focus imaging on both curved and flat surfaces. ACS Appl Mater Interfaces. 2022;14(40):46112. https://doi.org/10.1021/acsami.2c15489.

    Article  CAS  PubMed  Google Scholar 

  98. Liu YK, Zhang CY, Kou TD, Li YY, Shen JF. End-to-end computational optics with a singlet lens for large depth-of-field imaging. Opt Express. 2021;29(18):28530. https://doi.org/10.1364/OE.433067.

    Article  PubMed  ADS  Google Scholar 

  99. Gál J, Horváth G, Clarkson ENK, Haiman O. Image formation by bifocal lenses in a trilobite eye? Vision Res. 2000;40(7):843. https://doi.org/10.1016/S0042-6989(99)00216-3.

    Article  PubMed  Google Scholar 

  100. Liu XQ, Yang SN, Yu L, Chen QD, Zhang YL, Sun HB. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater. 2019;29(18):1900037. https://doi.org/10.1002/adfm.201900037.

    Article  CAS  Google Scholar 

  101. Tanida J, Kumagai T, Yamada K, Miyatake S, Ishida K, Morimoto T, Kondou N, Miyazaki D, Ichioka Y. Thin observation module by bound optics (TOMBO): concept and experimental verification. Appl Opt. 2001;40(11):1806. https://doi.org/10.1364/ao.40.001806.

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Duparre J, Wippermann F, Dannberg P, Reimann A. Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Opt Express. 2005;13(26):10539. https://doi.org/10.1364/opex.13.010539.

    Article  PubMed  ADS  Google Scholar 

  103. Li L, Yi AY. Development of a 3D artificial compound eye. Opt Express. 2010;18(17):18125. https://doi.org/10.1364/OE.18.018125.

    Article  PubMed  ADS  Google Scholar 

  104. Wang YY, Shi CY, Liu CY, Yu XD, Xu HR, Wang TS, Qiao YF, Yu WX. Fabrication and characterization of a polymeric curved compound eye. J Micromech Microeng. 2019;29(5):055008. https://doi.org/10.1088/1361-6439/ab0e9f.

    Article  CAS  Google Scholar 

  105. Deng ZF, Chen F, Yang Q, Bian H, Du GQ, Yong JL, Shan C, Hou X. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv Funct Mater. 2016;26(12):1995. https://doi.org/10.1002/adfm.201504941.

    Article  CAS  Google Scholar 

  106. Su SJ, Liang JS, Li XJ, Xin WW, Ye XS, Xiao JP, Xu J, Chen L, Yin PH. Hierarchical artificial compound eyes with wide field-of-view and antireflection properties prepared by nanotip-focused electrohydrodynamic jet printing. ACS Appl Mater Interfaces. 2021;13(50):60625. https://doi.org/10.1021/acsami.1c17436.

    Article  CAS  PubMed  Google Scholar 

  107. Wu D, Wang JN, Niu LG, Zhang XL, Wu SZ, Chen QD, Lee LP, Sun HB. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Adv Opt Mater.2014;2(8):751.https://doi.org/10.1002/adom.201400175.

    Article  CAS  Google Scholar 

  108. Kuo WK, Lin SY, Hsu SW, Yu HH. Fabrication and investigation of the bionic curved visual microlens array films. Opt Mater. 2017;66:630. https://doi.org/10.1016/j.optmat.2017.03.020.

    Article  CAS  ADS  Google Scholar 

  109. Kuo WK, Kuo GF, Lin SY, Her YuH. Fabrication and characterization of artificial miniaturized insect compound eyes for imaging. Bioinspir Biomim. 2015;10(5):056010. https://doi.org/10.1088/1748-3190/10/5/056010.

    Article  CAS  PubMed  Google Scholar 

  110. Liu HW, Chen F, Yang Q, Qu PB, He SG, Wang XH, Si JH, Hou X. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections. Appl Phys Lett. 2012;100(13):133701. https://doi.org/10.1063/1.3696019.

    Article  CAS  ADS  Google Scholar 

  111. Charman WN, Tucker J. The optical system of the goldfish eye. Vision Res. 1973;13(1):1. https://doi.org/10.1016/0042-6989(73)90160-0.

    Article  CAS  PubMed  Google Scholar 

  112. Ma MC, Li H, Gao XC, Si WH, Deng HX, Zhang J, Zhong X, Wang KY. Target orientation detection based on a neural network with a bionic bee-like compound eye. Opt Express. 2020;28(8):10794. https://doi.org/10.1364/oe.388125.

    Article  PubMed  ADS  Google Scholar 

  113. Xu HR, Zhang YJ, Wu DS, Zhang G, Wang ZY, Feng XP, Hu BL, Yu WX. Biomimetic curved compound-eye camera with a high resolution for the detection of distant moving objects. Opt Lett. 2020;45(24):6863. https://doi.org/10.1364/ol.411492.

    Article  CAS  PubMed  ADS  Google Scholar 

  114. Wang SK, Zhang F, Yang Q, Li MJ, Hou X, Chen F. Chalcogenide glass IR artificial compound eyes based on femtosecond laser microfabrication. Adv Mater Technol. 2023;8(2):2200741. https://doi.org/10.1002/admt.202200741.

    Article  CAS  Google Scholar 

  115. Stockman A, Sharpe LT. Human cone spectral sensitivities and color vision deficiencies. Vis Transduct Non-Vis Light Percept. 2008. https://doi.org/10.1007/978-1-59745-374-5_14.

    Article  Google Scholar 

  116. Cronin TW, Porter ML, Bok MJ, Caldwell RL, Marshall J. Colour vision in stomatopod crustaceans. Phil Trans R Soc B. 1862;2022(377):20210278. https://doi.org/10.1098/rstb.2021.0278.

    Article  CAS  Google Scholar 

  117. Liu F, Bian H, Zhang F, Yang Q, Shan C, Li MJ, Hou X, Chen F. IR artificial compound eye. Adv Opt Mater. 2020;8(4):1901767. https://doi.org/10.1002/adom.201901767.

    Article  CAS  Google Scholar 

  118. Wu WQ, Lu H, Han X, Wang CF, Xu ZS, Han ST, Pan CF. Recent progress on wavelength-selective perovskite photodetectors for image sensing. Small Methods. 2023;7:2201499. https://doi.org/10.1002/smtd.202201499.

    Article  Google Scholar 

  119. Zhou FC, Zhou Z, Chen JW, Choy TH, Wang JL, Zhang N, Lin ZY, Yu SM, Kang JF, Wong HSP, Chai Y. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol. 2019;14(8):776. https://doi.org/10.1038/s41565-019-0501-3.

    Article  CAS  PubMed  Google Scholar 

  120. Zhu QB, Li B, Yang DD, Liu C, Feng S, Chen ML, Sun Y, Tian YN, Su X, Wang XM, Qiu S, Li QW, Li XM, Zeng HB, Cheng HM, Sun DM. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat Commun. 2021;12(1):1798. https://doi.org/10.1038/s41467-021-22047-w.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  121. Lee TJ, Yun KR, Kim SK, Kim JH, Jin J, Sim KB, Lee DH, Hwang GW, Seong TY. Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv Mater. 2021;33(51):2105485. https://doi.org/10.1002/adma.202105485.

    Article  CAS  Google Scholar 

  122. Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature. 2020;579(7797):62. https://doi.org/10.1038/s41586-020-2038-x.

    Article  CAS  PubMed  ADS  Google Scholar 

  123. Han X, Xu ZS, Wu WQ, Liu XH, Yan PG, Pan CF. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 2020;1(3):2000029. https://doi.org/10.1002/sstr.202000029.

    Article  Google Scholar 

  124. Jia MM, Guo PW, Wang W, Yu AF, Zhang YF, Wang ZL, Zhai JY. Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Sci Bull. 2022;67(8):803. https://doi.org/10.1016/j.scib.2021.12.014.

    Article  CAS  Google Scholar 

  125. Teng CJ, Yu QM, Sun YJ, Ding BF, Chen WJ, Zhang ZH, Liu BL, Cheng HM. Homologous gradient heterostructure-based artificial synapses for neuromorphic computation. InfoMat. 2023;5(1):e12351. https://doi.org/10.1002/inf2.12351.

    Article  CAS  Google Scholar 

  126. Yan YL, Yu NN, Yu ZY, Su YP, Chen JW, Xiang T, Han YN, Wang JF. Optoelectronic synaptic memtransistor based on 2D SnSe/MoS2 van der Waals heterostructure under UV–ozone treatment. Small Methods. 2023;7:2201679. https://doi.org/10.1002/smtd.202201679.

    Article  CAS  Google Scholar 

  127. Zhang C, Li Y, Ma CL, Zhang QC. Recent progress of organic-inorganic hybrid perovskites in rram, artificial synapse, and logic operation. Small Sci. 2022;2(2):2100086. https://doi.org/10.1002/smsc.202100086.

    Article  CAS  Google Scholar 

  128. Sun YL, Li MJ, Ding YT, Wang HP, Wang H, Chen ZM, Xie D. Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat. 2022;4(10):e12317. https://doi.org/10.1002/inf2.12317.

    Article  CAS  Google Scholar 

  129. Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho KW, Lee GJ, Seung H, Bae HJ, Song YM, Hyeon T, Aluru NR, Nam S, Kim DH. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat Commun. 2020;11(1):5934. https://doi.org/10.1038/s41467-020-19806-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  130. Hu YX, Dai MJ, Feng W, Zhang X, Gao F, Zhang SC, Tan BY, Zhang J, Shuai Y, Fu YQ, Hu PA. Ultralow power optical synapses based on MoS2 layers by indium-induced surface charge doping for biomimetic eyes. Adv Mater. 2021;33(52):2104960. https://doi.org/10.1002/adma.202104960.

    Article  CAS  Google Scholar 

  131. Chen JG, Cao GM, Liu Q, Meng P, Liu Z, Liu FC. Two-dimensional Nb3Cl8 memristor based on desorption and adsorption of O2 molecules. Rare Met. 2022;41(1):325. https://doi.org/10.1007/s12598-021-01794-1.

    Article  CAS  Google Scholar 

  132. Chao YH, Chen JC, Yang DL, Tseng YJ, Hsu CH, Chen JY. High-performance non-volatile flash photomemory via highly oriented quasi-2D perovskite. Adv Funct Mater. 2022;32(19):2112521. https://doi.org/10.1002/adfm.202112521.

    Article  CAS  Google Scholar 

  133. Yang YF, Chiang YC, Lin YC, Li GS, Hung CC, Chen WC. Highly efficient photo-induced recovery conferred using charge-transfer supramolecular electrets in bistable photonic transistor memory. Adv Funct Mater. 2021;31(40):2102174. https://doi.org/10.1002/adfm.202102174.

    Article  CAS  Google Scholar 

  134. Wang Y, Iglesias D, Gali SM, Beljonne D, Samorì P. Light-programmable logic-in-memory in 2D semiconductors enabled by supramolecular functionalization: photoresponsive collective effect of aligned molecular dipoles. ACS Nano. 2021;15(8):13732. https://doi.org/10.1021/acsnano.1c05167.

    Article  CAS  PubMed  Google Scholar 

  135. Shi N, Zhang J, Ding Z, Jiang H, Yan Y, Gu D, Li W, Yi MD, Huang FZ, Chen SF, Xie LH, Ren YB, Li Y, Huang W. Ultrathin metal-organic framework nanosheets as nano-floating-gate for high performance transistor memory device. Adv Funct Mater. 2022;32(12):2110784. https://doi.org/10.1002/adfm.202110784.

    Article  CAS  Google Scholar 

  136. Liu JH, Zhang ZC, Qiao S, Fu GS, Wang SF, Pan CF. Lateral bipolar photoresistance effect in the CIGS heterojunction and its application in position sensitive detector and memory device. Sci Bull. 2020;65(6):477. https://doi.org/10.1016/j.scib.2019.11.016.

    Article  CAS  Google Scholar 

  137. Zou LR, Sang DD, Yao Y, Wang XT, Zheng YY, Wang NZ, Wang C, Wang QL. Research progress of optoelectronic devices based on two-dimensional MoS2 materials. Rare Met. 2023;42(1):17. https://doi.org/10.1007/s12598-022-02113-y.

    Article  CAS  Google Scholar 

  138. Zhang XM, Lu J, Wang ZR, Wang R, Wei JS, Shi T, Dou CM, Wu ZH, Zhu JX, Shang DS, Xing GZ, Chan MS, Liu Q, Liu M. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks. Sci Bull. 2021;66(16):1624. https://doi.org/10.1016/j.scib.2021.04.014.

    Article  Google Scholar 

  139. Yang L, Huang XD, Li Y, Zhou HJ, Yu YJ, Bao H, Li JC, Ren SG, Wang F, Ye L, He YH, Chen J, Pu GY, Li X, Miao XS. Self-selective memristor-enabled in-memory search for highly efficient data mining. InfoMat. 2023;5:e12416. https://doi.org/10.1002/inf2.12416.

    Article  Google Scholar 

  140. Xu JQ, Zhao XN, Zhao XL, Wang ZQ, Tang QX, Xu HY, Liu YC. Memristors with biomaterials for biorealistic neuromorphic applications. Small Sci. 2022;2(10):2200028. https://doi.org/10.1002/smsc.202200028.

    Article  CAS  Google Scholar 

  141. Kim Y, Zhu C, Lee WY, Smith A, Ma H, Li X, Son D, Matsuhisa N, Kim J, Bae WG, Cho SH, Kim M-G, Kurosawa T, Katsumata T, To JWF, Oh JY, Paik S, Kim SJ, Jin L, Yan F, Tok JBH, Bao Z. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv Mater. 2023;35(1):2203541. https://doi.org/10.1002/adma.202203541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52125205, U20A20166, 61805015 and 61804011, 52102184, 52202181), the National key R&D program of China (Nos. 2021YFB3200302 and 2021YFB3200304) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao-Feng Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZP., Han, X., Wu, WQ. et al. Recent advances in bioinspired vision systems with curved imaging structures. Rare Met. 43, 1407–1434 (2024). https://doi.org/10.1007/s12598-023-02573-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02573-w

Keywords

Navigation