Skip to main content
Log in

Anti-corrosive and highly reversible zinc metal anode enabled by the phenolic resin coating

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries have attracted much attention due to their high theoretical capacity, low cost, high safety, and eco-friendly. However, challenges such as dendrite growth and side reactions severely hinder the electrochemical performance of the Zn anode, leading to low Coulombic efficiency (CE) or even short circuits. Herein, phenolic resin (PF) is used as a protective coating on the surface of the zinc metal electrode. The PF layer can greatly improve the corrosion resistance of the Zn electrode in the electrolyte. Importantly, this artificial electrode/electrolyte interphase also elevates the nucleation barrier and restrains Zn2+ 2D diffusion, regulating the zinc deposition/dissolution behavior. As a result, PF@Zn symmetric cells exhibit superior performance than that of bare Zn symmetric cells, achieving a stable and dendrite-free cycle of 1400 h. Furthermore, the carbon nanotube/MnO2||PF@Zn (CNT/MnO2||PF@Zn) full cell also delivers a long cycle life with a high-capacity retention of about 180.0 mAh·g−1 after 1400 cycles, far exceeding that of bare Zn anode. This work provides a facile strategy for achieving a dendrite-free and rechargeable zinc anode.

Graphical abstract

摘要

水系锌离子电池因其理论容量高, 成本低, 安全性高和生态友好而备受关注。然而,锌枝晶生长和副反应等问题严重影响了锌金属负极的电化学性能,导致电池的库伦效率低甚至短路。本文利用酚醛树脂(PF)作为锌金属负极表面的保护涂层,其可以有效提高锌金属负极在电解液中的耐腐蚀性。更重要的是此电极/电解液界面层可提高锌离子的成核势垒并抑制其二维扩散,从而有效调节锌的沉积/溶解行为。结果表明,制备的PF@Zn对称电池的稳定性明显优于纯锌对称电池,可稳定循环1400 h。此外,CNT/MnO2||PF@Zn 全电池在1400 次循环后仍能保持约 180.0 mAh·g−1 的高比容量,远超过纯锌负极。这项研究为实现无枝晶, 可充电锌金属负极提供了一种简便有效的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng J, Huang Z, Ming F, Zeng Y, Wei B, Jiang Q, Qi Z, Wang Z, Liang H. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries. Small. 2022;18(21):e2200006. https://doi.org/10.1002/smll.202200006.

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Li L, Ji X, Cheng S. Scientific challenges and improvement strategies of Zn-based anodes for aqueous Zn-ion batteries. Chem Rec. 2022;22(10):e202200114. https://doi.org/10.1002/tcr.202200114.

    Article  CAS  PubMed  Google Scholar 

  3. Chen M, Zhang S, Zou Z, Zhong S, Ling W, Geng J, Liang F, Peng X, Gao Y, Yu F. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Met. 2023;42(9):2868. https://doi.org/10.1007/s12598-023-023032.

    Article  CAS  Google Scholar 

  4. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2020;11(1):2003065. https://doi.org/10.1002/aenm.202003065.

    Article  CAS  Google Scholar 

  5. Jia X, Liu C, Neale Z, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis crystal structure morphology and electrochemistry. Chem Rev. 2020;120(15):7795. https://doi.org/10.1021/acs.chemrev.9b00628.

    Article  CAS  PubMed  Google Scholar 

  6. Gan Y, Wang C, Li J, Zheng J, Wan H, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Google Scholar 

  7. Du W, Ang E, Yang Y, Zhang Y, Ye M, Li C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Mater. 2020;13(10):3330. https://doi.org/10.1039/d0ee02079f.

    Article  CAS  Google Scholar 

  8. Lu W, Xie C, Zhang H, Li X. Inhibition of zinc dendrite growth in zinc-based batteries. Chem Sus Chem. 2018;11(23):3996. https://doi.org/10.1002/cssc.201801657.

    Article  CAS  Google Scholar 

  9. Cui B, Han X, Hu W. Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Struct. 2021;2(6):2000128. https://doi.org/10.1002/sstr.202000128.

    Article  CAS  Google Scholar 

  10. He W, Zuo S, Xu X, Zeng L, Liu L, Zhao W, Liu J. Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater Chem Front. 2021;5(5):2201. https://doi.org/10.1039/d0qm00693a.

    Article  CAS  Google Scholar 

  11. Song M, Zhong C. Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 2022;41(2):356. https://doi.org/10.1007/s12598-021-01858-2.

    Article  CAS  Google Scholar 

  12. Li C, Shi X, Liang S, Ma X, Han M, Wu X, Zhou J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem Eng J. 2020;379:122248. https://doi.org/10.1016/j.cej.2019.122248.

    Article  CAS  Google Scholar 

  13. Li L, Jia S, Cheng Z, Zhang C. Improved strategies for separators in zinc-ion batteries. Chem Sus Chem. 2023;16(8):e202202330. https://doi.org/10.1002/cssc.202202330.

    Article  CAS  Google Scholar 

  14. Yan Z, Xin W, Zhu Z. Artificial interphase engineering to stabilize aqueous zinc metal anodes. Nanoscale. 2021;12(47):19828. https://doi.org/10.1039/d1nr06058a.

    Article  CAS  Google Scholar 

  15. Liu Y, Liu Y, Wu X. Toward long-life aqueous zinc ion batteries by constructing stable zinc anodes. Chem Rec. 2022;22(10):e202200088. https://doi.org/10.1002/tcr.202200088.

    Article  CAS  PubMed  Google Scholar 

  16. Tao F, Liu Y, Ren X, Wang J, Zhou Y, Miao Y, Ren F, Wei S, Ma J. Different surface modification methods and coating materials of zinc metal anode. J Energy Chem. 2022;66:397. https://doi.org/10.1016/j.jechem.2021.08.022.

    Article  CAS  Google Scholar 

  17. Wang Y, Sun H, Li N, Yang X, Liu H, Zheng G, Liu J, Wu Z, Zhai L, Mi L. Highly reversible and stable zinc anode enabled by a fully conjugated porous organic polymer protective layer. ACS Appl Energy Mater. 2022;5(2):2375. https://doi.org/10.1021/acsaem.1c03864.

    Article  CAS  Google Scholar 

  18. Hao J, Li X, Zhang S, Yang F, Zeng X, Zhang S, Bo G, Wang C, Guo Z. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater. 2020;30(30):2001263. https://doi.org/10.1002/adfm.202001263.

    Article  CAS  Google Scholar 

  19. Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci. 2019;12(6):1938. https://doi.org/10.1039/c9ee00596j.

    Article  CAS  Google Scholar 

  20. Wang Y, Chen Y, Liu W, Ni X, Qing P, Zhao Q, Wei W, Ji X, Ma J, Chen L. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J Mater Chem A. 2021;9(13):8452. https://doi.org/10.1039/d0ta12177k.

    Article  CAS  Google Scholar 

  21. Li L, Jia S, Cao M, Ji Y, Qiu H, Zhang D. Progress in research on metal-based materials in stabilized Zn anodes. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02441-7.

    Article  Google Scholar 

  22. Wang A, Zhou W, Huang A, Chen M, Chen J, Tian Q, Xu J. Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: a strategy to realize dendrite-free Zn–MnO2 batteries. J Colloid Interface Sci. 2020;577:256. https://doi.org/10.1016/j.jcis.2020.05.102.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng J, Zhao Q, Tang T, Yin J, Quilty C, Renderos G, Liu X, Deng Y, Wang L, Bock D, Jaye C, Zhang D, Takeuchi E, Takeuchi K, Marschilok A, Archer L. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019;366:645. https://doi.org/10.1126/science.aax6873.

    Article  CAS  PubMed  Google Scholar 

  24. Zhai S, Wang N, Tan X, Jiang K, Quan Z, Li Y, Li Z. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv Funct Mater. 2021;31(13):2008894. https://doi.org/10.1002/adfm.202008894.

    Article  CAS  Google Scholar 

  25. Kang L, Cui M, Jiang F, Gao Y, Luo H, Liu J, Liang W, Zhi C. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater. 2018;8(25):1801090. https://doi.org/10.1002/aenm.201801090.

    Article  CAS  Google Scholar 

  26. Liang P, Yi J, Liu X, Wu K, Wang Z, Cui Y, Wang Y, Xia Y, Zhang J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv Funct Mater. 2020;30(13):1908528. https://doi.org/10.1002/adfm.201908528.

    Article  CAS  Google Scholar 

  27. Zhang F, Wang C, Pan J, Tian F, Zeng S, Yang J, Qian Y. Polypyrrole-controlled plating/stripping for advanced zinc metal anodes. Mater Today Energy. 2020;17:100443. https://doi.org/10.1016/j.mtener.2020.100443.

    Article  Google Scholar 

  28. Xu Y, Guo L, Zhang H, Zhai H, Ren H. Research status industrial application demand and prospects of phenolic resin. RSC Adv. 2019;9:28924. https://doi.org/10.1039/C9RA06487G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asim M, Saba N, Jawaid M, Nasir M, Pervaiz M, Alothman O. A review on phenolic resin and its composites. Curr Anal Chem. 2018;14(3):185. https://doi.org/10.2174/1573411013666171003154410.

    Article  CAS  Google Scholar 

  30. Wang J, Yang Y, Zhang Y, Li Y, Sun R, Wang Z, Wang H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021;35:19. https://doi.org/10.1016/j.ensm.2020.10.027.

    Article  CAS  Google Scholar 

  31. Carotenuto G, Nicolais L. Kinetic study of phenolic resin cure by IR spectroscopy. J Appl Polym Sci. 1999;74:2703. https://doi.org/10.1002/(sici)1097-4628(19991209)74:11%3c2703::aid-app18%3e3.0.co;2-m.

    Article  CAS  Google Scholar 

  32. Abdallah M. Ethoxylated fatty alcohols as corrosion inhibitors for dissolution of zinc in hydrochloric acid. Corros Sci. 2003;45(12):2705. https://doi.org/10.1016/s0010-938x(03)00107-0.

    Article  CAS  Google Scholar 

  33. Stupnisek-Lisac E, Kasunic D, Vorkapic-Furac J. Imidazole derivatives as corrosion inhibitors for zinc in hydrochloric acid. Corros Sci. 1995;51(10):767. https://doi.org/10.5006/1.3293554.

    Article  CAS  Google Scholar 

  34. Oxtoby D, Kashchiev D. A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. J Chern Phys. 1994;100(10):7665. https://doi.org/10.1063/1.466859.

    Article  CAS  Google Scholar 

  35. Zhang Q, Hua Y. Effects of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J Appl Electrochem. 2008;39(2):261. https://doi.org/10.1007/s10800-008-9665-5.

    Article  CAS  Google Scholar 

  36. Ballesteros J, Díaz-Arista P, Meas Y, Ortega R, Trejo G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim Acta. 2007;52(11):3686. https://doi.org/10.1016/j.electacta.2006.10.042.

    Article  CAS  Google Scholar 

  37. Trejo G, Ruiz H, Borges R, Meas Y. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. J Appl Electrochem. 2001;31:685. https://doi.org/10.1023/A:1017580025961.

    Article  CAS  Google Scholar 

  38. Briggs D. XPS studies of polymer surface modifications and adhesion mechanisms. J Adhes. 1982;13(3–4):287. https://doi.org/10.1080/00218468208073192.

    Article  CAS  Google Scholar 

  39. Pan H, Shao Y, Yan P, Cheng Y, Han K, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K, Liu J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1(5):16039. https://doi.org/10.1038/nenergy.2016.39.

    Article  CAS  Google Scholar 

  40. Xie S, Li X, Li Y, Liang Q, Dong L. Material design and energy storage mechanism of Mn-based cathodes for aqueous zinc-ion batteries. Chem Rec. 2022;22(10):e202200201. https://doi.org/10.1002/tcr.202200201.

    Article  CAS  PubMed  Google Scholar 

  41. Kim S, Oh S. Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J Power Sources. 1998;72(2):150. https://doi.org/10.1016/S0378-7753(97)02703-1.

    Article  CAS  Google Scholar 

  42. Lin S, Zhang T. Review on recent developments, challenges, and perspectives of Mn-based oxide cathode materials for aqueous zinc-ion batteries and the status of Mn resources in China. Energy Fuels. 2023;37(6):4198. https://doi.org/10.1021/acs.energyfuels.2c03997.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52201248) and the Science and Technology Rising Star Project of Hebei University of Technology (No. JBKYXX2201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Ping Wang or An-Qiang Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17987 KB)

Supplementary file2 (MP4 39163 KB)

Supplementary file3 (MP4 28336 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YP., Yang, YD., Duan, SQ. et al. Anti-corrosive and highly reversible zinc metal anode enabled by the phenolic resin coating. Rare Met. 43, 2115–2124 (2024). https://doi.org/10.1007/s12598-023-02571-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02571-y

Keywords

Navigation