Skip to main content
Log in

Dendrite-free and stable Zn metal anodes with ZnO protective layer

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Metallic Zn can be used as an anode for aqueous zinc-ion batteries due to its low redox potential, rich resources, and high theoretical capacity. However, its practical application is limited by dendrite growth and side reactions. Herein, a simple in-situ growth strategy was applied to fabricate a Zn anode with a ZnO protective layer (Zn/ZnO) to lengthen the cycle life and inhibit the dendrite growth and side reactions. At 1 mA h cm−2 capacity, Zn/ZnO exhibits long-time stability (2500 h) at 1 mA cm−2 and outstanding rate capability (1000 h at 10 mA cm−2) in symmetrical cells. Furthermore, the average coulombic efficiency of the Zn/ZnO//Ti cell is 99.4%, which is desirable at 5 mA cm−2. In addition, the Zn/ZnO//MnO2 cell can maintain a specific capacity of 167.2 mA h g−1 after 800 stable cycles. This work presents a simple fabrication method for Zn anode with excellent performance and suggests the huge possibilities of implementing practically rechargeable aqueous zinc-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng X, Wu H H, Gao B, et al. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res, 2022, 15: 352–360

    Article  Google Scholar 

  2. Huang Y, Tang Y, Yuan W, et al. Challenges and recent progress in thermal management with heat pipes for lithium-ion power batteries in electric vehicles. Sci China Tech Sci, 2021, 64: 919–956

    Article  Google Scholar 

  3. Xie C, Li Y, Wang Q, et al. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy, 2020, 2: 540–560

    Article  Google Scholar 

  4. Ke C Z, Liu F, Zheng Z M, et al. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met, 2021, 40: 1347–1356

    Article  Google Scholar 

  5. Cai M, Zhang H, Zhang Y, et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci Bull, 2022, 67: 933–945

    Article  Google Scholar 

  6. Yi Z, Chen G, Hou F, et al. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater, 2020, 11: 2003065

    Article  Google Scholar 

  7. Kang K, Meng Y S, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311: 977–980

    Article  Google Scholar 

  8. Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: E170–E192

    Article  Google Scholar 

  9. Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries. Joule, 2020, 4: 771–799

    Article  Google Scholar 

  10. Liu Z, Qin L, Lu B, et al. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem, 2022, 15

  11. Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater, 2020, 28: 307–314

    Article  Google Scholar 

  12. Liu Z, Yang Y, Liang S, et al. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct, 2021, 2: 2100119

    Article  Google Scholar 

  13. Ruan P, Liang S, Lu B, et al. Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed, 2022, 61: 202200598

    Article  Google Scholar 

  14. Verma V, Kumar S, ManalastasJr. W, et al. Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett, 2021, 6: 1773–1785

    Article  Google Scholar 

  15. Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv Mater, 2020, 32: 2001755

    Article  Google Scholar 

  16. Park S H, Byeon S Y, Park J H, et al. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett, 2021, 6: 3078–3085

    Article  Google Scholar 

  17. Han C, Li W, Liu H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020, 74: 104880

    Article  Google Scholar 

  18. Chen M, Zhou W, Tian Q, et al. Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. J Energy Chem, 2022, 71: 539–546

    Article  Google Scholar 

  19. Han X, Leng H, Qi Y, et al. Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode. Chem Eng J, 2022, 431: 133931

    Article  Google Scholar 

  20. Qiu M, Wang D, Tawiah B, et al. Constructing PEDOT:PSS/Graphene sheet nanofluidic channels to achieve dendrite-free Zn anode. Compos Part B-Eng, 2021, 215: 108798

    Article  Google Scholar 

  21. Liu M, Yang L, Liu H, et al. Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl Mater Interfaces, 2019, 11: 32046–32051

    Article  Google Scholar 

  22. Chen P, Yuan X, Xia Y, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv Sci, 2021, 8: 2100309

    Article  Google Scholar 

  23. Zhang Y, Zhu M, Wu K, et al. An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. J Mater Chem A, 2021, 9: 4253–4261

    Article  Google Scholar 

  24. Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy, 2016, 1: 16039

    Article  Google Scholar 

  25. Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci, 2019, 12: 1938–1949

    Article  Google Scholar 

  26. Mainar A R, Iruin E, Colmenares L C, et al. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J Energy Storage, 2018, 15: 304–328

    Article  Google Scholar 

  27. Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ Sci, 2020, 13: 503–510

    Article  Google Scholar 

  28. Guo W, Zhang Y, Tong X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater Today Energy, 2021, 20: 100675

    Article  Google Scholar 

  29. Yang Y, Liu C, Lv Z, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater, 2021, 33: 2007388

    Article  Google Scholar 

  30. Amann P, Klötzer B, Degerman D, et al. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science, 2022, 376: 603–608

    Article  Google Scholar 

  31. Kattel S, Ramírez P J, Chen J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355: 1296–1299

    Article  Google Scholar 

  32. Lupan O, Chow L, Pauporté T, et al. Highly sensitive and selective hydrogen single-nanowire nanosensor. Sens Actuat B-Chem, 2012, 173: 772–780

    Article  Google Scholar 

  33. Xiao Q, Wang T. Improving the ethanol gas-sensing properties of porous ZnO microspheres by Co doping. Mater Res Bull, 2013, 48: 2786–2791

    Article  Google Scholar 

  34. Kim M Y, Naveen M H, Gurudatt N G, et al. Detection of nitric oxide from living cells using polymeric zinc organic framework-derived zinc oxide composite with conducting polymer. Small, 2017, 13: 1700502

    Article  Google Scholar 

  35. Wang L, Kang Y, Wang Y, et al. CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Mater Sci Eng-C, 2012, 32: 2079–2085

    Article  Google Scholar 

  36. Yang Q, Liang G, Guo Y, et al. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater, 2019, 31: 1903778

    Article  Google Scholar 

  37. Shi Y, Chen Y, Shi L, et al. An overview and future perspectives of rechargeable zinc batteries. Small, 2020, 16: 2000730

    Article  Google Scholar 

  38. Zhang Q, Luan J, Tang Y, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew Chem Int Ed, 2020, 59: 13180–13191

    Article  Google Scholar 

  39. Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater, 2019, 31: 1903675

    Article  Google Scholar 

  40. Wang F, Hu E, Sun W, et al. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ Sci, 2018, 11: 3168–3175

    Article  Google Scholar 

  41. Zhang N, Huang S, Yuan Z, et al. Direct self-assembly of mxene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed, 2021, 60: 2861–2865

    Article  Google Scholar 

  42. Gao X, Wu H, Li W, et al. H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small, 2020, 16: 1905842

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HuaChao Tao or XueLin Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22179071 and 52072217).

Supporting Information

The supporting information is available online at https://tech.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Tao, H., Wang, J. et al. Dendrite-free and stable Zn metal anodes with ZnO protective layer. Sci. China Technol. Sci. 65, 2361–2368 (2022). https://doi.org/10.1007/s11431-022-2117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2117-9

Keywords

Navigation