Skip to main content
Log in

Nanodiamond/Ti3C2 MXene-coated quartz crystal microbalance humidity sensor with high sensitivity and high quality factor

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To address the challenge of achieving both high sensitivity and a high quality factor in quartz crystal microbalance (QCM) humidity sensors, a nanodiamond (ND)/Ti3C2 MXene composite-coated QCM humidity sensor was fabricated. The material characteristics of ND, Ti3C2 MXene, and ND/Ti3C2 MXene composite were analyzed by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The experimental results demonstrated that the hydrophilic ND nanoparticles coated on Ti3C2 MXene nanosheet prevented the self-stacking of Ti3C2 MXene and enhanced the sensitivity of Ti3C2 MXene-based QCM humidity sensor. Moreover, the high mechanical modulus of Ti3C2 MXene material helped ND/Ti3C2 MXene composite-coated QCM humidity sensor to achieve a high quality factor (> 20,000). ND/Ti3C2 MXene composite-coated QCM humidity sensor exhibited a sensitivity of 82.45 Hz/%RH, a humidity hysteresis of 1.1%RH, fast response/recovery times, acceptable repeatability, and good stability from 11.3%RH to 97.3%RH. The response mechanism of ND/Ti3C2 MXene composite-coated QCM humidity sensor was analyzed in combination with a bi-exponential kinetic adsorption model. Finally, the potential application of ND/Ti3C2 MXene composite-coated QCM humidity sensor was demonstrated through its frequency response to wooden blocks with different moisture contents.

Graphical abstract

摘要

为了应对石英晶体微天平(QCM)湿度传感器在高灵敏度和高品质因素之间的挑战,制备了一种纳米金刚石(ND)/二维Ti3C2 MXene复合材料涂层的QCM湿度传感器。利用透射电子显微镜和傅里叶红外光谱表征了ND,Ti3C2 MXene和ND/Ti3C2 MXene复合材料的材料特性。实验结果表明亲水性的ND纳米颗粒涂层能阻止Ti3C2 MXene的自堆积,提高了Ti3C2 MXene基QCM湿度传感器的灵敏度。此外,Ti3C2 MXene材料的高机械模量帮助ND/Ti3C2 MXene复合涂层的QCM湿度传感器实现了高品质因素(>20,000)。ND/Ti3C2 MXene复合材料涂层的QCM湿度传感器在11.3至97.3 %RH的湿度范围内的灵敏度高达82.45 Hz/%RH,湿度滞后仅为1.1 %RH,还具有快速的响应/恢复时间,可接受的重复性,以及良好稳定性。此外,本文结合双峰指数动力学吸附模型分析了ND/Ti3C2 MXene复合材料涂层的QCM湿度传感器的响应机制。最后,通过其对具有不同含水率的木块的频率响应展示了ND/Ti3C2 MXene复合材料涂层的QCM湿度传感器的潜在应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu BH, Xie GZ, Li CZ, Wang S, Yuan Z, Duan ZH, Jiang YD, Tai HL. A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect. Rare Met. 2021;40(8):1995. https://doi.org/10.1007/s12598-020-01645-5.

    Article  CAS  Google Scholar 

  2. Zhang XM, Li ML, Yang WT, Wang QY, Liu SC, Zhang CW, Cao YT, Wang GJ. A general strategy for MOFs coupled to optical fiber for highly sensitive humidity sensing. Rare Met. 2023;42(6):1821. https://doi.org/10.1007/s12598-022-02245-1.

    Article  CAS  Google Scholar 

  3. Kapic A, Tsirou A, Verdini PG, Carrara S. Humidity sensors for high energy physics applications: a review. IEEE Sens J. 2020;20(18):10335. https://doi.org/10.1109/JSEN.2020.2994315.

    Article  CAS  Google Scholar 

  4. Yuan Z, Tai HL, Su YJ, Xie GZ, Du XS, Jiang YD. Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors. Rare Met. 2021;40(6):1597. https://doi.org/10.1007/s12598-020-01598-9.

    Article  CAS  Google Scholar 

  5. Meng W, Wu S, Wang X, Zhang D. High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sens Actuators B Chem. 2020;315:128058. https://doi.org/10.1016/j.snb.2020.128058.

    Article  CAS  Google Scholar 

  6. Zhang D, Wang M, Tang M, Song X, Zhang X, Kang Z, Liu X, Zhang J, Xue Q. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res. 2022;16:11938. https://doi.org/10.1007/s12274-022-4917-y.

    Article  CAS  Google Scholar 

  7. Duan ZH, Zhao QN, Li CZ, Wang S, Jiang YD, Zhang YJ, Liu BH, Tai HL. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 2021;40(7):1762. https://doi.org/10.1007/s12598-020-01524-z.

    Article  CAS  Google Scholar 

  8. Jiang YF, Guo CY, Zhang XF, Cheng XL, Huo LH, Wang TT, Xu YM. Er2O3 nanospheres with fast response to humidity for non-contact sensing. Rare Met. 2023;42(1):56. https://doi.org/10.1007/s12598-022-02165-0.

    Article  CAS  Google Scholar 

  9. Rasel MS, Maharjan P, Rahman MT, Salauddin M, Rana SMS, Lee S, Park JY. Highly responsive and robust micro-/nano-textured self-powered triboelectric humidity sensor. ACS Appl. Electron Mater. 2021;3(10):4376. https://doi.org/10.1021/acsaelm.1c00552.

    Article  CAS  Google Scholar 

  10. Chen Q, Yao Y, Huang XH, Liu D, Mao KL. Simulation analysis and experimental verification for sensitivity of IDE-QCM humidity sensors. Sens Actuators B Chem. 2021;341:129992. https://doi.org/10.1016/j.snb.2021.129992.

    Article  CAS  Google Scholar 

  11. Xing H, Li X, Lu Y, Wu Y, He Y, Chen Q, Liu Q, Han RPS. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens Actuators B Chem. 2022;361:131704. https://doi.org/10.1016/j.snb.2022.131704.

    Article  CAS  Google Scholar 

  12. Dong H, Zhang LX, Xu H, Yin YY, Liu YF, Bie LJ. A highly efficient humidity sensor based on lead (II) coordination polymer via in-situ decarboxylation and hydrolysis synthesis. Rare Met. 2022;41(5):1652. https://doi.org/10.1007/s12598-021-01913-y.

    Article  CAS  Google Scholar 

  13. Wang D, Zhang D, Li P, Yang Z, Mi Q, Yu L. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021;13(1):57. https://doi.org/10.1007/s40820-020-00580-5.

    Article  CAS  Google Scholar 

  14. Yan W, Zhang D, Liu X, Chen X, Yang C, Kang Z. Guar gum/ethyl cellulose-polyvinyl pyrrolidone composite-based quartz crystal microbalance humidity sensor for human respiration monitoring. ACS Appl Mater Inter. 2022;14(27):31343. https://doi.org/10.1021/acsami.2c08434.

    Article  CAS  Google Scholar 

  15. Lu Y, Wang MY, Wang DY, Sun YH, Liu ZH, Gao RK, Yu LD, Zhang DZ. Flexible impedance sensor based on Ti3C2Tx MXene and graphitic carbon nitride nanohybrid for humidity-sensing application with ultrahigh response. Rare Met. 2023;42(7):2204. https://doi.org/10.1007/s12598-023-02268-2.

    Article  CAS  Google Scholar 

  16. Zhang D, Mao R, Song X, Wang D, Zhang H, Xia H, Ma Y, Gao Y. Humidity sensing properties and respiratory behavior detection based on chitosan-halloysite nanotubes film coated QCM sensor combined with support vector machine. Sens Actuators B Chem. 2023;374:132824. https://doi.org/10.1016/j.snb.2022.132824.

    Article  CAS  Google Scholar 

  17. Su Y, Liu Y, Li W, Xiao X, Chen C, Lu H, Yuan Z, Tai H, Jiang Y, Zou J, Xie G, Chen J. Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater Horiz. 2023;10(3):842. https://doi.org/10.1039/D2MH01466A.

    Article  CAS  PubMed  Google Scholar 

  18. Su Y, Li W, Cheng X, Zhou Y, Yang S, Zhang X, Chen C, Yang T, Pan H, Xie G, Chen G, Zhao X, Xiao X, Li B, Tai H, Jiang Y, Chen LQ, Li F, Chen J. High-performance piezoelectric composites via β phase programming. Nat Commun. 2022;13(1):4867. https://doi.org/10.1038/s41467-022-32518-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su Y, Chen S, Liu B, Lu H, Luo X, Chen C, Li W, Long Y, Tai H, Xie G, Jiang Y. Maxwell displacement current induced wireless self-powered gas sensor array. Mater Today Phys. 2023;30:100951. https://doi.org/10.1016/j.mtphys.2022.100951.

    Article  CAS  Google Scholar 

  20. Chang Q, Wu D, Huang Y, Liang C, Liu L, Liu H, He Y, Huang Q, Qiu J, Tang X. A lead-free K2CuBr3 microwires-based humidity sensor realized via QCM for real-time breath monitoring. Sens Actuators B Chem. 2022;367:132112. https://doi.org/10.1016/j.snb.2022.132112.

    Article  CAS  Google Scholar 

  21. Li Z, Teng M, Yang R, Lin F, Fu Y, Lin W, Zheng J, Zhong X, Chen X, Yang B, Liao Y. Sb-doped WO3 based QCM humidity sensor with self-recovery ability for real-time monitoring of respiration and wound. Sens Actuators B Chem. 2022;361:131691. https://doi.org/10.1016/j.snb.2022.131691.

    Article  CAS  Google Scholar 

  22. Feng L, Shi Z, Yang J, Chen Y, Lu J, Guo J, Yi T. Miniaturized high-frequency humidity sensor based on quartz crystal microbalance. IEEE Trans Instrum Meas. 2022;71:1. https://doi.org/10.1109/TIM.2022.3200358.

    Article  Google Scholar 

  23. Xu Z, Zhang F, Qi P, Gao B, Zhang T. Study on a humidity sensor of quartz crystal microbalance modified with multi-pore polydopamine. IEEE Electron Device Lett. 2022;43(4):611. https://doi.org/10.1109/LED.2022.3151232.

    Article  CAS  Google Scholar 

  24. Yang J, Feng L, Chen Y, Feng L, Lu J, Du L, Guo J, Cheng Z, Shi Z, Zhao L. High-sensitivity and environmentally friendly humidity sensors deposited with recyclable green microspheres for wireless monitoring. ACS Appl Mater Inter. 2022;14(13):15608. https://doi.org/10.1021/acsami.2c00489.

    Article  CAS  Google Scholar 

  25. Li Z, Zhang B, Fu C, Tao R, Li H, Luo J. Ultrafast and sensitive hydrophobic QCM humidity sensor by sulfur modified Ti3C2Tx MXene. IEEE Sens J. 2023;23(4):3462. https://doi.org/10.1109/JSEN.2022.3214210.

    Article  CAS  Google Scholar 

  26. Chen Q, Feng NB, Huang XH, Yao Y, Jin YR, Pan W, Liu D. Humidity-sensing properties of a BiOCl-coated quartz crystal microbalance. ACS Omega. 2020;5(30):18818. https://doi.org/10.1021/acsomega.0c01946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Pardo L, Fariña J, Gabrielli C, Perrot H, Brendel R. Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sens Actuators B Chem. 2004;103(1):318. https://doi.org/10.1016/j.snb.2004.04.060.

    Article  CAS  Google Scholar 

  28. Goyal A, Tadigadapa S, Gupta A, Eklund PC. Use of single-walled carbon nanotubes to increase the quality factor of an AT-cut micromachined quartz resonator. Appl Phys Lett. 2005;87(20):204102. https://doi.org/10.1063/1.2130386.

    Article  CAS  Google Scholar 

  29. Yao Y, Huang X, Zhang B, Zhang Z, Hou D, Zhou Z. Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sens Actuators B Chem. 2020;302:127192. https://doi.org/10.1016/j.snb.2019.127192.

    Article  CAS  Google Scholar 

  30. Chen Q, Huang X, Yao Y, Luo K, Pan H, Wang Q. Ringed electrode configuration enhances the sensitivity of QCM humidity sensor based on lignin through fringing field effect. IEEE Sens J. 2021;21(20):22450. https://doi.org/10.1109/JSEN.2021.3109446.

    Article  CAS  Google Scholar 

  31. Chen Q, Huang X, Yao Y, Mao K. Analysis of the effect of electrode materials on the sensitivity of quartz crystal microbalance. Nanomaterials. 2022;12(6):975. https://doi.org/10.3390/nano12060975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Q, Liu D, Huang XH, Yao Y, Mao KL. Impedance analysis of chitin nanofibers integrated bulk acoustic wave humidity sensor with asymmetric electrode configuration. Nanomaterials. 2022;12(17):3035. https://doi.org/10.3390/nano12173035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang D, Wang D, Li P, Zhou X, Zong X, Dong G. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens Actuators B Chem. 2018;255:1869. https://doi.org/10.1016/j.snb.2017.08.212.

    Article  CAS  Google Scholar 

  34. Yu X, Chen X, Ding X, Yu X, Zhao X, Chen X. Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sens Actuators B Chem. 2020;317:128168. https://doi.org/10.1016/j.snb.2020.128168.

    Article  CAS  Google Scholar 

  35. Chen Q, Mao KL, Yao Y, Huang XH, Zhang Z. Nanodiamond/cellulose nanocrystals composite-based acoustic humidity sensor. Sens Actuators B Chem. 2022;373:132748. https://doi.org/10.1016/j.snb.2022.132748.

    Article  CAS  Google Scholar 

  36. Dong Y, Feng G. Effects of surface physical sorption on characteristic of coated quartz-crystal humidity sensor. Sens Actuators B Chem. 1995;24(1):62. https://doi.org/10.1016/0925-4005(95)85013-9.

    Article  CAS  Google Scholar 

  37. Yu X, Chen X, Yu X, Chen X, Ding X. A quartz crystal microbalance (QCM) humidity sensor based on a pencil-drawn method with high quality factor. IEEE Trans Electron Devices. 2021;68(10):5149. https://doi.org/10.1109/TED.2021.3104266.

    Article  CAS  Google Scholar 

  38. Yu X, Chen X, Li H, Ding X. A high-stability QCM humidity sensor coated with nanodiamond/multiwalled carbon nanotubes nanocomposite. IEEE Trans Nanotechnol. 2018;17(3):506. https://doi.org/10.1109/TNANO.2018.2819800.

    Article  CAS  Google Scholar 

  39. Ding X, Chen X, Chen X, Zhao X, Li N. A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sens Actuators B Chem. 2018;266:534. https://doi.org/10.1016/j.snb.2018.03.143.

    Article  CAS  Google Scholar 

  40. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459. https://doi.org/10.1007/s12598-020-01602-2.

    Article  CAS  Google Scholar 

  41. An H, Habib T, Shah S, Gao H, Patel A, Echols I, Zhao X, Radovic M, Green MJ, Lutkenhaus JL. Water sorption in mxene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl Nano Mater. 2019;2(2):948. https://doi.org/10.1021/acsanm.8b02265.

    Article  CAS  Google Scholar 

  42. Wang Y, Yue Y, Cheng F, Cheng Y, Ge B, Liu N, Gao Y. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano. 2022;16(2):1734. https://doi.org/10.1021/acsnano.1c09925.

    Article  CAS  PubMed  Google Scholar 

  43. Yang Z, Liu A, Wang C, Liu F, He J, Li S, Wang J, You R, Yan X, Sun P, Duan Y, Lu G. Improvement of gas and humidity sensing properties of organ-like mxene by alkaline treatment. ACS Sens. 2019;4(5):1261. https://doi.org/10.1021/acssensors.9b00127.

    Article  CAS  PubMed  Google Scholar 

  44. Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv. 2018;4(6):0491. https://doi.org/10.1126/sciadv.aat0491.

    Article  CAS  Google Scholar 

  45. Li R, Fan Y, Ma Z, Zhang D, Liu Y, Xu J. Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping. Microchim Acta. 2021;188(3):81. https://doi.org/10.1007/s00604-021-04723-2.

    Article  CAS  Google Scholar 

  46. Li Q, Xu X, Guo J, Hill JP, Xu H, Xiang L, Li C, Yamauchi Y, Mai Y. Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization. Angew Chem Int Edit. 2021;60(51):26528. https://doi.org/10.1002/anie.202111823.

    Article  CAS  Google Scholar 

  47. Yan B, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. Orderly self-stacking a high-stability coating of MXene@polydopamine hybrid onto textiles for multifunctional personal thermal management. Compos Part A Appl Sci Manuf. 2022;160: 107038. https://doi.org/10.1016/j.compositesa.2022.107038.

    Article  CAS  Google Scholar 

  48. Walls FL, Gagnepain JJ. Environmental sensitivities of quartz oscillators. IEEE Trans. Sonics Ultrason. 1992;39(2):241. https://doi.org/10.1109/58.139120.

    Article  CAS  Google Scholar 

  49. Li X, Chen X, Yao Y, Li N, Chen X, Bi X. Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sens J. 2013;13(12):4749. https://doi.org/10.1109/JSEN.2013.2273615.

    Article  CAS  Google Scholar 

  50. Qi P, Xu Z, Zhang T, Fei T, Wang R. Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. J Colloid Interface Sci. 2020;560:284. https://doi.org/10.1016/j.jcis.2019.10.080.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang D, Chen H, Zhou X, Wang D, Jin Y, Yu S. In-situ polymerization of metal organic frameworks-derived ZnCo2O4/polypyrrole nanofilm on QCM electrodes for ultra-highly sensitive humidity sensing application. Sens Actuators A Phys. 2019;295:687. https://doi.org/10.1016/j.sna.2019.06.050.

    Article  CAS  Google Scholar 

  52. Zhang D, Wang D, Wang D, Wu Z. Polypyrrole-modified tin disulfide nanoflower-based quartz crystal microbalance sensor for humidity sensing. IEEE Sens J. 2019;19(20):9166. https://doi.org/10.1109/JSEN.2019.2926318.

    Article  CAS  Google Scholar 

  53. Qi P, Xu Z, Zhou T, Zhang T, Zhao H. Study on a quartz crystal microbalance sensor based on chitosan-functionalized mesoporous silica for humidity detection. J Colloid Interface Sci. 2021;583:340. https://doi.org/10.1016/j.jcis.2020.09.029.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project funded by the National Natural Science Foundation of China (No. 61401047), the China Postdoctoral Science Foundation (No. 2018M633349), the Oversea Students Funding Project of the Department of Human Resources and Social Security of Sichuan and the Scientific Research Foundation of CUIT (No. KYQN202210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Yao or Qiao Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Chen, Q., Li, YQ. et al. Nanodiamond/Ti3C2 MXene-coated quartz crystal microbalance humidity sensor with high sensitivity and high quality factor. Rare Met. 43, 2719–2729 (2024). https://doi.org/10.1007/s12598-023-02564-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02564-x

Keywords

Navigation