Skip to main content
Log in

Restraining growth of Zn dendrites by poly dimethyl diallyl ammonium cations in aqueous electrolytes

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metallic zinc is an excellent anode material for Zn-ion batteries, but the growth of Zn dendrite severely hinders its practical application. Herein, an efficient and economical cationic additive, poly dimethyl diallyl ammonium (PDDA) was reported, used in aqueous Zn-ion batteries electrolyte for stabilizing Zn anode. The growth of zinc dendrites can be significantly restrained by benefiting from the pronounced electrostatic shielding effect from PDDA on the Zn metal surface. Moreover, the PDDA is preferentially absorbed on Zn (002) plane, thus preventing unwanted side reactions on Zn anode. Owing to the introduction of a certain amount of PDDA additive into the common ZnSO4-based electrolyte, the cycle life of assembled Zn||Zn cells (1 mA·cm−2 and 1 mAh·cm−2) is prolonged to more than 1100 h. In response to the perforation issue of Zn electrodes caused by PDDA additives, the problem can be solved by combining foamy copper with zinc foil. For real application, Zn-ion hybrid supercapacitors and MnO2||Zn cells were assembled, which exhibited excellent cycling stability with PDDA additives. This work provides a new solution and perspective to cope with the dendrite growth problem of Zn anode.

Graphical abstract

摘要

在锌离子电池中, 金属锌是非常良好的负极材料应, 但是锌负极严重的锌枝晶生长限制其实际应用. 因此, 我们报道一种高效, 经济的阳离子型添加剂聚二烯丙基二甲基氯化铵 (PDDA), 添加到水系电解液中. 由于PDDA能够提供静电屏蔽作用, 抑制了锌枝晶的生长. 而且PDDA就有特异性吸附能力, 能够附着于Zn (002)晶面上, 抑制金属锌的腐蚀和副反应的产生. 当一定量的PDDA加入之后, 对称电池 (Zn||Zn) 在1 mA·cm−2,1 mAh·cm−2条件下进行沉积剥离(循环测试)寿命超过1100 h. 与此同时,在循环过程中, PDDA带来了Zn电极发生贯穿问题. 为了解决此问题, 我们将泡沫铜和金属锌箔复合, 能够得到有效的解决. 在实际器件测试中, 将具有PDDA添加剂的电解液应用于锌离子混合超级电容器 (ZHCs) 和锌锰电池中 (MnO2||Zn), 器件都体现出良好循环寿命. 因此, 这个工作提供了一个新的思路来解决金属锌枝晶生长的问题.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao R, Qian L, Sui YM, Zhao GY, Guo RS, Hu SY, Liu P, Zhu HJ, Wang FC, Zhi CY, Yang C. A versatile cation additive enabled highly reversible zinc metal anode. Adv Energy Mater. 2021;12(2):2102780. https://doi.org/10.1002/aenm.202102780.

    Article  CAS  Google Scholar 

  2. Zhong C, Liu B, Ding J, Liu XR, Zhong YW, Li Y, Sun CB, Han XP, Deng YD, Zhao NQ, Hu WB. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat Energy. 2020;5(6):440. https://doi.org/10.1038/s41560-020-0584-y.

    Article  CAS  Google Scholar 

  3. Zhang N, Cheng FY, Liu JX, Wang LB, Long XH, Liu XS, Li FJ, Chen J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun. 2017;8(1):405. https://doi.org/10.1038/s41467-017-00467-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qian L, Yao WT, Yao R, Sui YM, Zhu HJ, Wang FC, Zhao JW, Zhi CY, Yang C. Cations coordination-regulated reversibility enhancement for aqueous Zn-ion battery. Adv Funct Maters. 2021;31(40):2105736. https://doi.org/10.1002/adfm.202105736.

    Article  CAS  Google Scholar 

  5. Nie XY, Miao LC, Yuan WT, Ma GQ, Di SL, Wang YY, Shen SG, Zhang N. Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes. Adv Funct Mater. 2022;32(32):2203905. https://doi.org/10.1002/adfm.202203905.

    Article  CAS  Google Scholar 

  6. Yang Q, Liang GJ, Guo Y, Liu ZX, Yan BX, Wang DH, Huang ZD, Li XL, Fan J, Zhi CY. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31(43):1903778. https://doi.org/10.1002/adma.201903778.

    Article  CAS  Google Scholar 

  7. Wang DH, Li Q, Zhao YW, Hong H, Li HF, Huang ZD, Liang GJ, Yang Q, Zhi CY. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv Energy Mater. 2022;12(9):2102707. https://doi.org/10.1002/aenm.202102707.

    Article  CAS  Google Scholar 

  8. Gan Y, Wang C, Li JY, Zheng JJ, Wang HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Article  Google Scholar 

  9. Liu GL, Zhang T, Li XJ, Cao RP, Shen JK, Guo DL, Wu NT, Yuan WW, Cao A, Liu XM. Oxygen-deficient ammonium vanadate/GO composites with suppressed vanadium dissolution for ultra-stable high-rate aqueous zinc-ion batteries. Rare Met. 2023;42(11):3729. https://doi.org/10.1007/s12598-023-02364-3.

    Article  CAS  Google Scholar 

  10. Zhu ZX, Lin ZW, Sun ZW, Zhang PX, Li CP, Dong R, Mi HW. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 2022;41(11):3729. https://doi.org/10.1007/s12598-022-02088-w.

    Article  CAS  Google Scholar 

  11. Zhao ZM, Zhao JW, Hu ZL, Li JD, Li JJ, Zhang YJ, Wang C, Cui GL. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energ Environ Sci. 2019;12(6):1938. https://doi.org/10.1039/C9EE00596J.

    Article  CAS  Google Scholar 

  12. Zhou JH, Xie M, Wu F, Mei Y, Hao YT, Li L, Chen RJ. Encapsulation of metallic Zn in a hybrid MXene/Graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv Mater. 2022;34(1):2106897. https://doi.org/10.1002/adma.202106897.

    Article  CAS  Google Scholar 

  13. Li B, Xue J, Lv X, Zhang RC, Ma KX, Wu XW, Dai L, Wang L, He ZX. A facile coating strategy for high stability aqueous zinc ion batteries: porous rutile nano-TiO2 coating on zinc anode. Sur Coat Tech. 2021;421(15):127367. https://doi.org/10.1016/j.surfcoat.2021.127367.

    Article  CAS  Google Scholar 

  14. He HB, Tong H, Song XY, Song XP, Liu J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J Mater Chem A. 2020;8(16):7836. https://doi.org/10.1039/D0TA00748J.

    Article  CAS  Google Scholar 

  15. Yang Y, Liu CY, Lv ZH, Yang H, Zhang YF, Ye MH, Chen LB, Zhao JB, Li CC. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater. 2021;33(11):2007388. https://doi.org/10.1002/adma.202007388.

    Article  CAS  Google Scholar 

  16. An YL, Tian Y, Liu CK, Xiong SL, Feng JK, Qian YT. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano. 2021;15(9):15259. https://doi.org/10.1021/acsnano.1c05934.

    Article  CAS  PubMed  Google Scholar 

  17. Jia H, Qiu MH, Lan CT, Liu HQ, Dirican M, Fu SH, Zhang XW. Advanced zinc anode with nitrogen-doping interface induced by plasma surface treatment. Adv Sci. 2022;9(3):2103952. https://doi.org/10.1002/advs.202103952.

    Article  CAS  Google Scholar 

  18. Ma LT, Zhi CY. Zn electrode/electrolyte interfaces of Zn batteries: a mini review. Electrochem Commun. 2021;122:106898. https://doi.org/10.1016/j.elecom.2020.106898.

    Article  CAS  Google Scholar 

  19. Xu CX, Jiang JJ. Electrolytes speed up development of zinc batteries. Rare Met. 2021;40(4):3. https://doi.org/10.1007/s12598-020-01628-6.

    Article  CAS  Google Scholar 

  20. Lin XS, Wang ZR, Ge LH, Xu JW, Ma WQ, Ren MM, Liu WL, Yao JS, Zhang CB. Electrolyte modification for long-life Zn ion batteries: achieved by methanol additive. ChemElectroChem. 2022;9(4):e202101724. https://doi.org/10.1002/celc.202101724.

    Article  CAS  Google Scholar 

  21. Eric H, Li HZ, Adulhakem YE. Rechargeable Zn2+/Al3+ dual-ion electrochromic device with long life time utilizing dimethyl sulfoxide (DMSO)-nanocluster modified hydrogel electrolytes. RSC Adv. 2019;9(55):32047. https://doi.org/10.1039/C9RA06785J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miao LC, Wang RH, Di SL, Qian ZF, Zhang L, Xin WL, Liu MY, Zhu ZQ, Chu SQ, Du Y, Zhang N. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano. 2022;16(2):9667. https://doi.org/10.1021/acsnano.2c02996.

    Article  CAS  PubMed  Google Scholar 

  23. Tran TNT, Zhao MS, Geng SJ, Ivey DG. Ethylene glycol as an antifreeze additive and corrosion inhibitor for aqueous zinc-ion batteries. Batteries Supercaps. 2022;5(6):e202100420. https://doi.org/10.1002/batt.202100420.

    Article  CAS  Google Scholar 

  24. Zhang SJ, Hao JN, Luo D, Zhang PF, Zhang BK, Davey K, Lin Z, Qiao SZ. Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater. 2021;11(37):2102010. https://doi.org/10.1002/aenm.202102010.

    Article  CAS  Google Scholar 

  25. Xu YT, Zhu JJ, Feng JZ, Wang Y, Wu XX, Ma PJ, Zhang X, Wang GZ, Yan XB. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Mater. 2021;38:299. https://doi.org/10.1016/j.ensm.2021.03.019.

    Article  Google Scholar 

  26. Zheng XY, Zhou Y, Yan X, Lam KH, Hou XH. Vanadium oxide with elevated interlayers for durable aqueous hybrid Li+/Zn2+ batteries. ACS Appl Energy Mater. 2022;5(7):9070. https://doi.org/10.1021/acsaem.2c01512.

    Article  CAS  Google Scholar 

  27. Tian M, Liu CF, Zheng JQ, Jia XX, Jahrman EP, Seidler GT, Long DH, Atif M, Alsalhi M, Cao GZ. Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 2020;29:9. https://doi.org/10.1016/j.ensm.2020.03.024.

    Article  Google Scholar 

  28. Han DL, Wang ZX, Lu HT, Li H, Cui CJ, Zhang ZC, Sun R, Geng CN, Liang QH, Guo XX, Mo YB, Zhi X, Kang FY, Weng Z, Yang QH. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2102982. https://doi.org/10.1002/aenm.202102982.

    Article  CAS  Google Scholar 

  29. Li CC, Wu Q, Ma J, Pan HG, Liu YX, Lu YY. Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. J Mater Chem A. 2022;10:14692. https://doi.org/10.1039/D2TA01672A.

    Article  CAS  Google Scholar 

  30. Yang JZ, Yin BS, Sun Y, Pan HG, Sun WQ, Jia BH, Zhang SW, Ma TY. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano–micro Lett. 2022;14(1):1. https://doi.org/10.1007/s40820-021-00782-5.

    Article  CAS  Google Scholar 

  31. Li B, Zhang XT, Wang TT, He ZX, Lu BG, Liang SQ, Zhou J. Interfacial engineering strategy for high-performance Zn metal anodes. Nano–micro Lett. 2022;14(1):1. https://doi.org/10.1007/s40820-021-00764-7.

    Article  CAS  Google Scholar 

  32. Huang JQ, Chi XW, Du YX, Qiu QL, Liu Y. Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS Appl Mater Interfaces. 2021;13(3):4008. https://doi.org/10.1021/acsami.0c20241.

    Article  CAS  PubMed  Google Scholar 

  33. Lin CX, Liu YC, Zhang XX, Miao XF, Chen YQ, Chen SJ, Zhang YN. Regulating the plating process of zinc with highly efficient additive for long-life zinc anode. J Power Sources. 2022;549(30):232078. https://doi.org/10.1016/j.jpowsour.2022.232078.

    Article  CAS  Google Scholar 

  34. Wang SY, Wang X, Jiang SP. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells. Phys Chem Chem Phys. 2011;13(15):6883. https://doi.org/10.1039/C0CP02495C.

    Article  CAS  PubMed  Google Scholar 

  35. Paisanpisuttisin A, Poonwattanapong P, Rakthabut P, Ariyasantichai P, Prasittichai C, Siriwatcharapiboon W. Sensitive electrochemical sensor based on nickel/PDDA/reduced graphene oxide modified screen-printed carbon electrode for nitrite detection. RSC Adv. 2022;12(45):29491. https://doi.org/10.1039/D2RA03918D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen T, Jin ZK, Liu YC, Zhang XQ, Wu HQ, Li MX, Feng WW, Zhang Q, Wang C. Stable high-temperature lithium-metal batteries enabled by strong multiple ion-dipole interactions. Angew Chem Int Edit. 2022;61(35):e202207645. https://doi.org/10.1002/anie.202207645.

    Article  CAS  Google Scholar 

  37. Muthirulan P, Velmurugan R. Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs-PDDA/PB nanocomposite film modified ITO electrode for biosensors. Colloid Surface B. 2011;83(2):347. https://doi.org/10.1016/j.colsurfb.2010.12.006.

    Article  CAS  Google Scholar 

  38. Wang LD, Liu GZ, Zou LJ, Xue DF. Phase evolution from rod-like ZnO to plate-like zinc hydroxysulfate during electrochemical deposition. J Alloy Compd. 2010;493(1–2):471. https://doi.org/10.1016/j.jallcom.2009.12.129.

    Article  CAS  Google Scholar 

  39. Gomes A, Silva Pereira MI. Pulsed electrodeposition of Zn in the presence of surfactants. Electrochim Acta. 2006;51(7):1342. https://doi.org/10.1016/j.electacta.2005.06.023.

    Article  CAS  Google Scholar 

  40. Sun KEK, Hoang TKA, Doan TNL, Yu Y, Zhu X, Tian Y, Chen P. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl Mater Interfaces. 2017;9(11):9681. https://doi.org/10.1021/acsami.6b16560.

    Article  CAS  PubMed  Google Scholar 

  41. Wei P, Sun XP, He ZM, Cheng FY, Xu J, Li Q, Ren YR, He JH, Han JT, Huang YH. Adenosine triphosphate induced transition-metal phosphide nanostructures encapsulated with N, P-codoped carbon toward electrochemical water splitting. Fuel. 2023;339(1):127303. https://doi.org/10.1016/j.fuel.2022.127303.

    Article  CAS  Google Scholar 

  42. Wang T, Sun JM, Hua YB, Krishna BNV, Xi Q, Ai W, Yu JS. Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 2022;53:273. https://doi.org/10.1016/j.ensm.2022.08.046.

    Article  Google Scholar 

  43. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen XL, Shao YY, Engelhard MH, Nie ZM, Xiao J, Liu XJ, Sushko PV, Liu J, Zhang JG. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013;135(11):4450. https://doi.org/10.1021/ja312241y.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao RR, Wang HF, Du HR, Yang Y, Gao ZH, Qie L, Huang YH. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat Commun. 2022;13(1):3252. https://doi.org/10.1038/s41467-022-30939-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han YF, Wang JX, Zhang HR, Zhao S, Ma Q, Wang Z. Electrochemical impedance spectroscopy (EIS): an efficiency method to monitor resin curing processes. Sensor Actuat A-Phys. 2016;250(15):7. https://doi.org/10.1016/j.sna.2016.08.028.

    Article  CAS  Google Scholar 

  46. Lin CX, Zhang H, Zhang XX, Liu YC, Zhang YN. Kinetics-driven MnO2 nanoflowers supported by interconnected porous hollow carbon spheres for zinc-ion batteries. ACS Appl Mater Interfaces. 2023;15(11):14388. https://doi.org/10.1021/acsami.3c00067.

    Article  CAS  Google Scholar 

  47. Kim S, Lee J, Kang JS, Jo K, Kim S, Sung YE, Yoon J. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system. Chemosphere. 2015;125:50. https://doi.org/10.1016/j.chemosphere.2015.01.024.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Fuzhou science and technology project (Nos. 2021-ZD-213 and 2020-Z-6), Fujian Provincial Department of Science and Technology (Nos. 2021T3036, 2020T3004, 2020T3030 and 2020H0040), STS Science And Technology Project of the Chinese Academy of Sciences (No. KFJ-STS-QYZD-2021-09-001), Quanzhou Science and Technology Project (No. 2020G17), and the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (No. 2021009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bai-Sheng Sa or Yi-Ning Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3467 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XX., Chen, YQ., Lin, CX. et al. Restraining growth of Zn dendrites by poly dimethyl diallyl ammonium cations in aqueous electrolytes. Rare Met. (2024). https://doi.org/10.1007/s12598-023-02561-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-023-02561-0

Keywords

Navigation