Skip to main content
Log in

Review of 2D Bi2X3 (X = S, Se, Te): from preparation to photodetector

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Detector has become an indispensable part of human beings. The increasing demand for photodetectors with high performance has promoted the research of novel materials. At the same time, with the development of rising material system, two-dimensional (2D) materials attract a lot of attention, while the suitable option for fabricating photodetector is still limited. The prospering of bismuth chalcogenides injected new vitality for material field, thereinto, the unique topological insulator characteristics make the research on bismuth selenide (Bi2Se3) and bismuth telluride (Bi2Te3) intriguing. 2D Bi2X3 also exhibits unique features among various 2D materials, of which, the adjustable narrow energy band gap and polarization-sensitive photocurrent contribute to the promising application of high performance and broadband photodetector. In this review, from a bottom-up perspective, we summarize fundamental properties, synthesis method, photodetector performance of 2D Bi2X3 based on the previous study, which provide an overall perspective of 2D Bi2X3. Wherein, the section of the photodetector is specifically discussed with regard to pure Bi2X3 photodetector and heterojunction photodetector. A brief summary and outlook were also explored in the end.

Graphical abstract

摘要

探测器已经成为人类不可缺少的一部分,对高性能的光电探测器需求的不断增加促进了对新型材料的研究。同时,随着材料体系的不断发展,二维材料吸引了大量的关注,而用于制造光电探测器的合适选择仍然有限。铋族化合物的蓬勃发展为材料领域注入了新的活力,其中,独特的拓扑绝缘体特性使对硒化铋和碲化铋的研究令人着迷。二维Bi2X3在各种二维材料中也表现出独特的特征,其中,可调节的窄带隙、偏振敏感的光电流等特点使其在高性能、宽频带光电探测器上具有很好的应用前景。在这篇综述中,我们从自下而上的角度,在以往研究的基础上总结了二维Bi2X3的基本特性、合成方法、光电探测器的性能,为二维Bi2X3提供了一个整体的视角。其中,光电探测器的部分具体讨论了纯Bi2X3光电探测器和异质结光电探测器。最后进行了简要的总结和展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [35]. Copyright 2020, Wiley–VCH GmbH. b Crystal structure of and Bi2Se3. Reproduced with permission from Ref. [34]. Copyright 2019, The Royal Society of Chemistry

Fig. 2

Reproduced with permission from Ref. [44]. Copyright 2009, Springer Nature. e Calculated band gap of Bi2Se3. Reproduced with permission from Ref. [45]. Copyright 2014, American Physical Society. f Band structure of ultrathin films of Bi2Te3, upper panels: ARPES intensity maps; middle panels: differential ARPES intensity maps; lower panels: band structures from first-principles calculations. Reproduced with permission from Ref. [46]. Copyright 2010, WILEY–VCH Verlag GmbH & Co. g Thickness-dependent band gap of Bi2Se3 and Bi2Te3. Reproduced with permission from Ref. [47]. Copyright 2013, American Physical Society

Fig. 3

Reproduced with permission from Ref. [35]. Copyright 2020, Wiley–VCH GmbH. b Stokes and anti-Stokes Raman spectra of Bi2Se3 nanoplatelets for different thickness excited by a 632.8-nm laser; c zoom-in view of A 11g modes for various thicknesses of quintuple-layers (QLs) excited by 532 nm (left panel) and 632.8 nm (right panel) lasers; d A 11g mode frequency versus thickness; e intensity ratio of A1g branch (blue circle line) and Eg symmetry modes (pink square line), where corresponding intensity ratio of bulk sample is represented by a bold line. Reproduced with permission from Ref. [52]. Copyright 2011, American Chemical Society. f Raman spectra of Bi2Se3 on SiO2; g intensity ratio of I(A2u)/I(A 21g ); h shift of A 21g and E 2g mode frequencies. Reproduced with permission from Ref. [53]. Copyright 2015, American Chemical Society. i FWHM of E 2g mode dependence on thickness. Reproduced with permission from Ref. [52]. Copyright 2011, American Chemical Society. j Observed Raman spectra of Bi2Te3 films with a thickness of 1, 2, 3, 5, 6, 7 and 40QL; k FWHM of SPM and intensity ratio I(SPM)/I(E 2g ) for Bi2Te3 films with different thickness; l frequency variation of A 11g and A 21g as a function of film thickness. Reproduced with permission from Ref. [55]. Copyright 2013, Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013. m, n Schematic diagrams of observed lattice vibration modes. m Reproduced with permission from Ref. [31]. Copyright 2014, American Physical Society. n Reproduced with permission from Ref. [53]. Copyright 2015, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [57]. Copyright 2010, American Chemical Society. c Slab of Bi2Se3 exfoliated using indium-bonded method. d AFM scans (20 μm × 20 μm) of Bi2Se3 slabs produced from six exfoliations. Reproduced with permission from Ref [59]. Copyright 2017, American Chemical Society. e Schematic representation of formation of Bi2Se3 nanosheets. Reproduced with permission from Ref. [63] Copyright 2014, Elsevier B.V. f Process of electrochemical exfoliation of Bi2Se3 and Bi2Te3. Reproduced with permission from Ref. [65] Copyright 2016, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [66]. Copyright 2017, Wiley–VCH Verlag GmbH & Co. b TEM image and c ED pattern of Bi2Se3 crystals. Reproduced with permission from Ref. [67]. Copyright 2003, Elsevier Science B.V. d TEM images of Bi2Te3 nanoplates; e schematic depiction of possible formation process of Bi2Te3 nanoplates. Reproduced with permission from Ref. [68]. Copyright 2009, Elsevier B.V. f Scheme for growth of a nanodisc from a nanocrystal, involving attachment of small NCs and recrystallization into a single-crystal nanodisc, and a second layer grows epitaxially on the primary nanodisc and corresponding TEM images. Reproduced with permission from Ref. [41]. Copyright 2012, American Chemical Society. g TEM characterization of Bi2Se3 nanosheets; h AFM image of Bi2Se3 nanosheets; i statistical analysis of lateral diameters of 200 Bi2Se3 nanosheets obtained from TEM images; j heights of 200 Bi2Se3 nanosheets determined by AFM. Reproduced with permission from Ref. [71]. Copyright 2016, Wiley–VCH GmbH

Fig. 6

Reproduced with permission from Ref. [72]. Copyright 2009, AIP Publishing. c AFM image of Bi2Te3 for obtaining extended area of continuous single QL (inset being an atomic scheme structure of QL) and height profile of surface topography along dashed line in AFM image. Reproduced with permission from Ref. [73]. Copyright 2011, Elsevier B.V. d STM image of two spirals originating at a SiC step edge; e ball-and-stick models of Bi2Se3 along (111) direction, and a 2D island with type A steps with two dangling bonds per edge atom and type B steps with one dangling bond; f schematic diagrams showing a Bi2Se3 island leaping over a straight upper SiC step; g schematic diagrams (side and top views) illustrating formation of a clockwise spiral. Reproduced with permission from Ref. [75]. Copyright 2012, American Physical Society

Fig. 7

Reproduced with permission from Ref. [35]. Copyright 2020, Wiley–VCH GmbH. b TEM images of Bi2Se3 nanoribbons with corresponding HRTEM images and (insets) SAED patterns. Reproduced with permission from Ref. [83]. Copyright 2010, American Chemical Society. c AFM image and a height profile (dashed lines) of Bi2Te3 NP (left) and Bi2Se3 NP (right); d schematic drawing of a vapor–solid (VS) growth process in a horizontal tube furnace and NPs growth mechanism with a side view of NPs (1 QL) showing Se-terminated top and bottom surfaces with saturated bonds and side surfaces with dangling bonds ready to bind with incoming atoms. Reproduced with permission from Ref. [84]. Copyright 2010, American Chemical Society. e Typical photograph of Bi2Se3 nanoplates epitaxially grown on a multilayer graphene substrate. Reproduced with permission from Ref. [85]. Copyright 2010, American Chemical Society. f OM images of 3 × 3 arrays of triangular Bi2Se3 nanoplates. Reproduced with permission from Ref. [86]. Copyright 2012, American Chemical Society. g Typical optical microscopy image in transmission mode of large-area, few-layer Bi2Se3 nanosheets grown on a mica substrate, where blank mica substrate is black circle. Reproduced with permission from Ref. [87]. Copyright 2012, Nat. Chem. h Optical images of van der Waals grown Bi2Se3 on h-BN. Reproduced with permission from Ref. [53]. Copyright 2015, American Chemical Society. i Schematic representation of procedures for patterning of 2D chalcogenide crystals; j scanning electron microscopy image of an array of spiral Bi2Se3 crystals; k AFM image of a spiral Bi2Se3 crystal. Reproduced with permission from Ref. [88]. Copyright 2015, Springer Nature. l Representative OM images of as-synthesized Bi2Se3 flakes with hexagon shape on mica substrates; m statistical relation between nucleation density and domain size of Bi2Se3 flakes grown at 500, 550 and 600 °C, respectively. Reproduced with permission from Ref. [89]. Copyright 2018, Wiley–VCH GmbH

Fig. 8

Reproduced with permission from Ref. [37]. Copyright 2020, Wiley–VCH GmbH. c Schematic diagram of Bi2Se3 FET; d transfer characteristics of Bi2Se3 with different thicknesses; e correlation between carrier mobility and thickness with all data measured at room temperature; f time-resolved photoresponse of device at a bias voltage of 1 V and an illumination power of 142.93 mW·cm−2; g corresponding fitting curve of photocurrent versus laser power intensity (all data were measured at 300 K using 1456-nm laser under vacuum (1.33×10−4 Pa)); h corresponding fitting curve of photocurrent versus laser power intensity at T = 80 K; i IV curves of a Bi2Se3-based device in dark mode and under different incident light powers at T = 80 K; j response time and decay time at different temperatures; k time-traced photoresponse at various temperatures at Vbias = 1 V and P = 142.93 mW·cm−2; l on/off ratio, Idark, and Ilight; m responsivity and detectivity in temperature range from 80 to 300 K. Reproduced with permission from Ref. [89]. Copyright 2018, Wiley–VCH GmbH. n AFM image of a representative flexible Bi2Te3 nanoplate photodetector; photo-switching behavior of flexible NIR Bi2Te3 nanoplate photodetector after bending for o 0, p 300 times, respectively. Reproduced with permission from Ref. [92]. Copyright 2019, Elsevier B.V

Fig. 9

Reproduced with permission from Ref. [98]. Copyright 2020, the Royal Society of Chemistry. d Schematic illustration of growth of Bi2Se3 NF/Si NW heterojunction; e responsivity and f detectivity of sample under different NIR intensities. Reproduced with permission from Ref. [100]. Copyright 2017, American Chemical Society. g Schematic device structure of graphene−Bi2Se3 heterostructure device. Reproduced with permission from Ref. [106]. Copyright 2017, American Chemical Society. h Schematic diagram of device structure with measurement setup; i Dirac band diagrams of n-type Bi2Se3 and p-type SnTe. j Band alignment and photocurrent generation of SnTe/Bi2Se3 heterojunction; k bias voltage modulation mechanism of photodetector. Reproduced with permission from Ref. [107] Copyright 2020, Elsevier B.V. l 3D schematic illustration of Bi2Se3/WSe2 heterostructure; m band diagrams of heterostructure at different bias voltages. Reproduced with permission from Ref. [108]. Copyright 2020, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature. n Schematic illustration of graphene/Bi2Te3 heterostructure phototransistor device; o photocurrent as a function of gate voltage and (inset) energy diagrams of heterostructure when VG < VD and VG > VD; p device photoresponsivity as a function of incident power at 532, 980 and 1550 nm, respectively. Reproduced with permission from Ref. [109]. Copyright 2015, American Chemical Society. q Device schematic diagram of vertically stacked WSe2/Bi2Te3 p−n heterojunction; r photoresponsivity at different wavelengths under self-powered mode (inset) and bias mode. Reproduced with permission from Ref. [111]. Copyright 2019, American Chemical Society

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. https://doi.org/10.1126/science.1102896.

    Article  CAS  PubMed  Google Scholar 

  2. Shan YB, Yue XF, Chen JJ, Han JK, Ekoya G, Hu LG, Liu R, Qiu ZJ, Cong CX. Revealing layer-dependent interlayer interactions by doping effect on graphene in WSe2/N-layer graphene heterostructures using Raman and photoluminescence spectroscopy. Rare Met. 2022;41(11):3646. https://doi.org/10.1007/s12598-022-02053-7.

    Article  CAS  Google Scholar 

  3. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev. 2013;113(5):3407. https://doi.org/10.1021/cr300335p.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang GF, Zhou XF, Liu ZP, Mao Y. Challenges and strategies for graphene reinforced copper matrix composites. Chin J Rare Met. 2022;46(7):946. https://doi.org/10.13373/j.cnki.cjrm.XY20030005.

    Google Scholar 

  5. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498. https://doi.org/10.1021/nl802558y.

    Article  CAS  PubMed  Google Scholar 

  6. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure of bilayer graphene. Science. 2006;313(5789):951.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 2009;459(7248):820. https://doi.org/10.1038/nature08105.

    Article  CAS  PubMed  Google Scholar 

  8. An J, Sun T, Wang B, Xu J, Li S. Efficient graphene in-plane homogeneous p-n-p junction based infrared photodetectors with low dark current. Sci China Inform Sci. 2021;64:140403. https://doi.org/10.1007/s11432-020-3179-9.

    Article  Google Scholar 

  9. Shi ZT, Zhao HB, Chen XQ, Wu GM, Wei F, Tu HL. Chemical vapor deposition growth and transport properties of MoS2–2H thin layers using molybdenum and sulfur as precursors. Rare Met. 2022;41(10):3574. https://doi.org/10.1007/s12598-015-0599-x.

    Article  CAS  Google Scholar 

  10. Shi ZT, Zhao HB, Chen XQ, Wu GM, Wei F, Tu HL. Chemical vapor deposition growth and transport properties of MoS2-2H thin layers using molybdenum and sulfur as precursors. Rare Met. 2022;41(10):3574. https://doi.org/10.1007/s12598-015-0599-x.

    Article  CAS  Google Scholar 

  11. Wu W, De D, Chang SC, Wang Y, Peng H, Bao J, Pei SS. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl Phys Lett. 2013;102(14):142106. https://doi.org/10.1063/1.4801861.

    Article  CAS  Google Scholar 

  12. Zhang XL, Li J, Leng B, Yang L, Song YD, Feng SY, Feng LZ, Liu ZT, Fu ZW, Jiang X, Liu BD. High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction. Tungsten. 2023;5(1):91. https://doi.org/10.1007/s42864-022-00139-4.

    Article  CAS  Google Scholar 

  13. Zhang BK, Wang DB, Jiao SJ, Xu ZK, Liu YX, Zhao CC, Pan JW, Liu DH, Liu G, Jiang BJ, Li YF, Zhao LC, Wang JZ. TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production. Chem. Eng. J. 2022;446: https://doi.org/10.1016/j.cej.2022.137138.

    Article  CAS  Google Scholar 

  14. Mahvash F, Paradis E, Drouin D, Szkopek T, Siaj M. Space-charge limited transport in large-area monolayer hexagonal boron nitride. Nano Lett. 2015;15(4):2263. https://doi.org/10.1021/nl504197c.

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater. 2004;3(6):404. https://doi.org/10.1038/nmat1134.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W, Chen M, Wang J, Yang Y, Jiang L. Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications. Appl Catal B Environ. 2018;238:6. https://doi.org/10.1016/j.apcatb.2018.07.011.

    Article  CAS  Google Scholar 

  17. Li B, Lai C, Zeng G, Huang D, Qin L, Zhang M, Cheng M, Liu X, Yi H, Zhou C, Huang F, Liu S, Fu Y. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications. Small. 2019;15(8):e1804565. https://doi.org/10.1002/smll.201804565.

    Article  CAS  PubMed  Google Scholar 

  18. Qiu M, Singh A, Wang D, Qu J, Swihart M, Zhang H, Prasad PN. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today. 2019;25:135. https://doi.org/10.1016/j.nantod.2019.02.012.

    Article  CAS  Google Scholar 

  19. Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han SJ, Wang H, Xia Q, Ma TP, Mueller T, Xia F. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016;16(7):4648. https://doi.org/10.1021/acs.nanolett.6b01977.

    Article  CAS  PubMed  Google Scholar 

  20. Favron A, Gaufres E, Fossard F, Phaneuf-L’Heureux AL, Tang NY, Levesque PL, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater. 2015;14(8):826. https://doi.org/10.1038/nmat4299.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng P, Song C, Zhang T, Zhang Y, Wang Y, Jia JF, Wang J, Wang Y, Zhu BF, Chen X, Ma X, He K, Wang L, Dai X, Fang Z, Xie X, Qi XL, Liu CX, Zhang SC, Xue QK. Landau quantization of topological surface states in Bi2Se3. Phys Rev Lett. 2010;105(7):076801. https://doi.org/10.1103/PhysRevLett.105.076801.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Liu CX, Xu C, Qi XL, Zhang SC. Magnetic impurities on the surface of a topological insulator. Phys Rev Lett. 2009;102(15):156603. https://doi.org/10.1103/PhysRevLett.102.156603.

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Qin HJ, Yang F, Liu J, Guan T, Qu FM, Zhang GH, Shi JR, Xie XC, Yang CL, Wu KH, Li YQ, Lu L. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett. 2010;105(17):176602. https://doi.org/10.1103/PhysRevLett.105.176602.

    Article  CAS  PubMed  Google Scholar 

  24. Urazhdin S, Bilc D, Mahanti SD, Tessmer SH, Kyratsi T, Kanatzidis MG. Surface effects in layered semiconductors Bi2Se3 and Bi2Te3. Phys Rev B. 2004;69(8):085313. https://doi.org/10.1103/PhysRevB.69.085313.

    Article  CAS  Google Scholar 

  25. Sharma A, Bhattacharyya B, Srivastava AK, Senguttuvan TD, Husale S. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci Rep. 2016;6:19138. https://doi.org/10.1038/srep19138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo CF, Cao S, Zhang J, Tang H, Guo S, Tian Y, Liu Q. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks. J Am Chem Soc. 2011;133(21):8211. https://doi.org/10.1021/ja111000m.

    Article  CAS  PubMed  Google Scholar 

  27. Afsar MF, Rafiq MA, Jamil A, Fareed S, Siddique F, Tok AIY, Hasan MMU. Development of high-performance bismuth sulfide nanobelts humidity sensor and effect of humid environment on its transport properties. ACS Omega. 2019;4(1):2030. https://doi.org/10.1021/acsomega.8b01854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhar N, Syed N, Mohiuddin M, Jannat A, Zavabeti A, Zhang BY, Datta RS, Atkin P, Mahmood N, Esrafilzadeh D, Daeneke T, Kalantar-Zadeh K. Exfoliation behavior of van der waals strings: case study of Bi2S3. ACS Appl Mater Interfaces. 2018;10(49):42603. https://doi.org/10.1021/acsami.8b14702.

    Article  CAS  PubMed  Google Scholar 

  29. Ju Z, Hou Y, Bernard A, Taufour V, Yu D, Kauzlarich SM. Ambipolar topological insulator and high carrier mobility in solution grown ultrathin nanoplates of Sb-doped Bi2Se3. ACS Appl Electron Mater. 2019;1(9):1917. https://doi.org/10.1021/acsaelm.9b00415.

    Article  CAS  Google Scholar 

  30. Peranio N, Winkler M, Bessas D, Aabdin Z, König J, Böttner H, Hermann RP, Eibl O. Room-temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi2Te3 and Sb2Te3 thin films. J Alloys Compd. 2012;521:163. https://doi.org/10.1016/j.jallcom.2012.01.108.

    Article  CAS  Google Scholar 

  31. Zhao Y, Luo X, Zhang J, Wu J, Bai X, Wang M, Jia J, Peng H, Liu Z, Quek SY, Xiong Q. Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys Rev B. 2014;90(24):245428. https://doi.org/10.1103/PhysRevB.90.245428.

    Article  CAS  Google Scholar 

  32. Phuoc Huu L, Liu PT, Luo CW, Lin JY, Wu KH. Thickness-dependent magnetotransport properties and terahertz response of topological insulator Bi2Te3 thin films. J Alloys Compd. 2017;692:972. https://doi.org/10.1016/j.jallcom.2016.09.109.

    Article  CAS  Google Scholar 

  33. Jenkins JO, Rayne JA, Ure RW Jr. Elastic moduli and phonon properties of Bi2Te3. Phys Rev B. 1972;5(8):3171.

    Article  Google Scholar 

  34. Yang L, Wang Z, Li M, Gao XPA, Zhang Z. The dimensional crossover of quantum transport properties in few-layered Bi2Se3 thin films. Nanoscale Adv. 2019;1(6):2303. https://doi.org/10.1039/c9na00036d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Messalea KA, Zavabeti A, Mohiuddin M, Syed N, Jannat A, Atkin P, Ahmed T, Walia S, McConville CF, Kalantar-Zadeh K, Mahmood N, Khoshmanesh K, Daeneke T. Two-step synthesis of large-area 2D Bi2S3 nanosheets featuring high in-plane anisotropy. Adv Mater Interfaces. 2020;7(22):2001131. https://doi.org/10.1002/admi.202001131.

    Article  CAS  Google Scholar 

  36. Xu JJ, Gu HY, Chen MD, Li XP, Zhao HW, Yang HB. Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation. Rare Met. 2022;41(7):2417. https://doi.org/10.1007/s12598-022-01988-1.

    Article  CAS  Google Scholar 

  37. Huang W, Xing C, Wang Y, Li Z, Wu L, Ma D, Dai X, Xiang Y, Li J, Fan D, Zhang H. Facile fabrication and characterization of two-dimensional bismuth (iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale. 2018;10(5):2404. https://doi.org/10.1039/c7nr09046c.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5(6):438. https://doi.org/10.1038/nphys1270.

    Article  CAS  Google Scholar 

  39. Xu B, Li H, Yang H, Xiang W, Zhou G, Wu Y, Wang X. Colloidal 2D–0D lateral nanoheterostructures: a case study of site-selective growth of CdS nanodots onto Bi2Se3 nanosheets. Nano Lett. 2015;15(6):4200. https://doi.org/10.1021/acs.nanolett.5b01464.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Liu H, Guo X, Jiang Y, Sun Y, Wang H, Wang Y, Li HD, Xie MH, Xie XC, Wang J. Crossover from 3D to 2D quantum transport in Bi2Se3/In2Se3 superlattices. Nano Lett. 2014;14(9):5244. https://doi.org/10.1021/nl502220p.

    Article  CAS  PubMed  Google Scholar 

  41. Min Y, Moon GD, Kim BS, Lim B, Kim JS, Kang CY, Jeong U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J Am Chem Soc. 2012;134(6):2872. https://doi.org/10.1021/ja209991z.

    Article  CAS  PubMed  Google Scholar 

  42. Lu HZ, Shan WY, Yao W, Niu Q, Shen SQ. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys Rev B. 2010;81(11):115407. https://doi.org/10.1103/PhysRevB.81.115407.

    Article  CAS  Google Scholar 

  43. Shan WY, Lu HZ, Shen SQ. Effective continuous model for surface states and thin films of three-dimensional topological insulators. New J Phys. 2010;12:1367. https://doi.org/10.1088/1367-2630/12/4/043048.

    Article  CAS  Google Scholar 

  44. Zhang Y, He K, Chang CZ, Song CL, Wang LL, Chen X, Jia JF, Fang Z, Dai X, Shan WY, Shen SQ, Niu Q, Qi XL, Zhang SC, Ma XC, Xue QK. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys. 2010;6(8):584. https://doi.org/10.1038/nphys1689.

    Article  CAS  Google Scholar 

  45. Li C, Winzer T, Walsh A, Yan B, Stampfl C, Soon A. Stacking-dependent energetics and electronic structure of ultrathin polymorphic V2VI3 topological insulator nanofilms. Phys Rev B. 2014;90(7):075438. https://doi.org/10.1103/PhysRevB.90.075438.

    Article  CAS  Google Scholar 

  46. Li YY, Wang G, Zhu XG, Liu MH, Ye C, Chen X, Wang YY, He K, Wang LL, Ma XC, Zhang HJ, Dai X, Fang Z, Xie XC, Liu Y, Qi XL, Jia JF, Zhang SC, Xue QK. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv Mater. 2010;22(36):4002. https://doi.org/10.1002/adma.201000368.

    Article  CAS  PubMed  Google Scholar 

  47. Liu W, Peng X, Wei X, Yang H, Stocks GM, Zhong J. Surface and substrate induced effects on thin films of the topological insulators Bi2Se3 and Bi2Te3. Phys Rev B. 2013;87(20):205315. https://doi.org/10.1103/PhysRevB.87.205315.

    Article  CAS  Google Scholar 

  48. Zhao Y, Luo X, Li H, Zhang J, Araujo PT, Gan CK, Wu J, Zhang H, Quek SY, Dresselhaus MS, Xiong Q. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013;13(3):1007. https://doi.org/10.1021/nl304169w.

    Article  CAS  PubMed  Google Scholar 

  49. Lui CH, Heinz TF. Measurement of layer breathing mode vibrations in few-layer graphene. Phys Rev B. 2013;87(12):121404. https://doi.org/10.1103/PhysRevB.87.121404.

    Article  CAS  Google Scholar 

  50. Zhang X, Han WP, Wu JB, Milana S, Lu Y, Li QQ, Ferrari AC, Tan PH. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B. 2013;87(11):115413. https://doi.org/10.1103/PhysRevB.87.115413.

    Article  CAS  Google Scholar 

  51. Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk NH, Miotkowski I, Cao H, Chen YP, Wu Y, Qiao S, Jiang Z. Ultrafast carrier and phonon dynamics in Bi2Se3 crystals. Appl Phys Lett. 2010;97(18):182102. https://doi.org/10.1063/1.3513826.

    Article  CAS  Google Scholar 

  52. Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus MS, Xiong Q. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011;11(6):2407. https://doi.org/10.1021/nl200773n.

    Article  CAS  PubMed  Google Scholar 

  53. Xu S, Han Y, Chen X, Wu Z, Wang L, Han TY, Ye W, Lu H, Long G, Wu Y, Lin J, Cai Y, Ho KM, He Y, Wang N. van der waals epitaxial growth of atomically thin Bi2Se3 and thickness-dependent topological phase transition. Nano Lett. 2015;15(4):2645. https://doi.org/10.1021/acs.nanolett.5b00247.

    Article  CAS  PubMed  Google Scholar 

  54. LaForge AD, Frenzel A, Pursley BC, Lin T, Liu X, Shi J, Basov DN. Optical characterization of Bi2Se3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material. Phys Rev B. 2010;81(12):125120. https://doi.org/10.1103/PhysRevB.81.125120.

    Article  CAS  Google Scholar 

  55. Wang C, Zhu X, Nilsson L, Wen J, Wang G, Shan X, Zhang Q, Zhang S, Jia J, Xue Q. In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res. 2013;6(9):688. https://doi.org/10.1007/s12274-013-0344-4.

    Article  CAS  Google Scholar 

  56. Dasgupta A, Yang X, Gao J. Natural 2D layered mineral cannizzarite with anisotropic optical responses. Sci Rep. 2022;12(1):10006. https://doi.org/10.1038/s41598-022-14046-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong SS, Kundhikanjana W, Cha JJ, Lai K, Kong D, Meister S, Kelly MA, Shen ZX, Cui Y. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 2010;10(8):3118. https://doi.org/10.1021/nl101884h.

    Article  CAS  PubMed  Google Scholar 

  58. Liu G, Kong L, Hu Q, Zhang S. Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: high piezoelectricity with improved thermal stability. Appl Phys Rev. 2020;7(2):021405. https://doi.org/10.1063/5.0004324.

    Article  CAS  Google Scholar 

  59. Melamed CL, Ortiz BR, Gorai P, Martinez AD, McMahon WE, Miller EM, Stevanovic V, Tamboli AC, Norman AG, Toberer ES. Large area atomically flat surfaces via exfoliation of bulk Bi2Se3 single crystals. Chem Mater. 2017;29(19):8472. https://doi.org/10.1021/acs.chemmater.7b03198.

    Article  CAS  Google Scholar 

  60. Guo Y, Zhao Q, Yao Z, Si K, Zhou Y, Xu X. Efficient mixed-solvent exfoliation of few-quintuple layer Bi2S3 and its photoelectric response. Nanotechnology. 2017;28(33):335602. https://doi.org/10.1088/1361-6528/aa79ce.

    Article  CAS  PubMed  Google Scholar 

  61. Shan Y, Li Z, Ruan B, Zhu J, Xiang Y, Dai X. Two-dimensional Bi2S3-based all-optical photonic devices with strong nonlinearity due to spatial self-phase modulation. Nanophotonics. 2019;8(12):2225. https://doi.org/10.1515/nanoph-2019-0231.

    Article  CAS  Google Scholar 

  62. Tan SM, Mayorga-Martinez CC, Sofer Z, Pumera M. Bipolar Electrochemistry exfoliation of layered metal chalcogenides Sb2S3 and Bi2S3 and their hydrogen evolution applications. Chemistry. 2020;26(29):6479. https://doi.org/10.1002/chem.201904767.

    Article  CAS  PubMed  Google Scholar 

  63. Zang C, Qi X, Ren L, Hao G, Liu Y, Li J, Zhong J. Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route. Appl Surf Sci. 2014;316:341. https://doi.org/10.1016/j.apsusc.2014.07.064.

    Article  CAS  Google Scholar 

  64. Liu S, Huang Z, Qiao H, Hu R, Ma Q, Huang K, Li H, Qi X. Two-dimensional Bi2Se3 nanosheet based flexible infrared photodetector with pencil-drawn graphite electrodes on paper. Nanoscale Adv. 2020;2(2):906. https://doi.org/10.1039/c9na00745h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ambrosi A, Sofer Z, Luxa J, Pumera M. Exfoliation of layered topological insulators Bi2Se3 and Bi2Te3 via electrochemistry. ACS Nano. 2016;10(12):11442. https://doi.org/10.1021/acsnano.6b07096.

    Article  CAS  PubMed  Google Scholar 

  66. Arabzadeh A, Salimi A. Facile synthesis of ultra-wide two dimensional Bi2S3 nanosheets: characterizations, properties and applications in hydrogen peroxide sensing and hydrogen storage. Electroanalysis. 2017;29(9):2027. https://doi.org/10.1002/elan.201600808.

    Article  CAS  Google Scholar 

  67. Wang D, Yu D, Mo M, Liu X, Qian Y. Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals. J Cryst Growth. 2003;253:445. https://doi.org/10.1016/s0022-0248(03)01019-4.

    Article  CAS  Google Scholar 

  68. Xu Y, Ren Z, Cao G, Ren W, Deng K, Zhong Y. Fabrication and characterization of Bi2Te3 nanoplates via a simple solvothermal process. Physica B. 2009;404(21):4029. https://doi.org/10.1016/j.physb.2009.07.153.

    Article  CAS  Google Scholar 

  69. Kang SM, Ha SS, Jung WG, Park M, Song HS, Kim BJ, Hong JI. Two-dimensional nanoplates of Bi2Te3 and Bi2Se3 with reduced thermal stability. AIP Adv. 2016;6(2):025110. https://doi.org/10.1063/1.4942113.

    Article  CAS  Google Scholar 

  70. Lin Z, Chen Y, Yin A, He Q, Huang X, Xu Y, Liu Y, Zhong X, Huang Y, Duan X. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 2014;14(11):6547. https://doi.org/10.1021/nl503140c.

    Article  CAS  PubMed  Google Scholar 

  71. Xie H, Li Z, Sun Z, Shao J, Yu X-F, Guo Z, Wang J, Xiao Q, Wang H, Wang Q-Q, Zhang H, Chu PK. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small. 2016;12(30):4136. https://doi.org/10.1002/smll.201601050.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl Phys Lett. 2009;95(5):053114. https://doi.org/10.1063/1.3200237.

    Article  CAS  Google Scholar 

  73. Krumrain J, Mussler G, Borisova S, Stoica T, Plucinski L, Schneider CM, Grützmacher D. MBE growth optimization of topological insulator Bi2Te3 films. J Cryst Growth. 2011;324(1):115. https://doi.org/10.1016/j.jcrysgro.2011.03.008.

    Article  CAS  Google Scholar 

  74. Wang G, Zhu XG, Sun YY, Li YY, Zhang T, Wen J, Chen X, He K, Wang LL, Ma XC, Jia JF, Zhang SB, Xue QK. Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv Mater. 2011;23(26):2929. https://doi.org/10.1002/adma.201100678.

    Article  CAS  PubMed  Google Scholar 

  75. Liu Y, Weinert M, Li L. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001). Phys Rev Lett. 2012;108(11):115501. https://doi.org/10.1103/PhysRevLett.108.115501.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Yang J, Wang Z, Chen J, Yang Q, Lv Z, Zhou Y, Zhai Y, Li Z, Han ST. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small. 2019;15(7):1805431. https://doi.org/10.1002/smll.201805431.

    Article  CAS  Google Scholar 

  77. Zhang G, Qin H, Chen J, He X, Lu L, Li Y, Wu K. Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv Funct Mater. 2011;21(12):2351. https://doi.org/10.1002/adfm.201002667.

    Article  CAS  Google Scholar 

  78. Xenogiannopoulou E, Tsipas P, Aretouli KE, Tsoutsou D, Giamini SA, Bazioti C, Dimitrakopulos GP, Komninou P, Brems S, Huyghebaert C, Radu IP, Dimoulas A. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale. 2015;7(17):7896. https://doi.org/10.1039/c4nr06874b.

    Article  CAS  PubMed  Google Scholar 

  79. Tung Y, Chong CW, Liao CW, Chang CH, Huang SY, Chuang PY, Lee MK, Cheng CM, Li YC, Liu CP, Huang JCA. Tuning the transport and magnetism in a Cr-Bi2Se3 topological insulator by Sb doping. RSC Adv. 2017;7(75):47789. https://doi.org/10.1039/c7ra08201k.

    Article  CAS  Google Scholar 

  80. Chen KHM, Lin HY, Yang SR, Cheng CK, Zhang XQ, Cheng CM, Lee SF, Hsu CH, Lee YH, Hong M, Kwo J. Van der Waals epitaxy of topological insulator Bi2Se3 on single layer transition metal dichalcogenide MoS2. Appl Phys Lett. 2017;111(8):083106. https://doi.org/10.1063/1.4989805.

    Article  CAS  Google Scholar 

  81. Liu X, Smith DJ, Cao H, Chen YP, Fan J, Zhang Y-H, Pimpinella RE, Dobrowolska M, Furdyna JK. Characterization of Bi2Te3 and Bi2Se3 topological insulators grown by MBE on (001) GaAs substrates. J Vac Sci Technol B. 2012;30(2):02B103. https://doi.org/10.1116/1.3668082.

    Article  CAS  Google Scholar 

  82. Chitara B, Kolli BSC, Yan F. Near-Infrared photodetectors based on 2D Bi2S3. Chem Phys Lett. 2022;804:139876. https://doi.org/10.1016/j.cplett.2022.139876.

    Article  CAS  Google Scholar 

  83. Kong D, Randel JC, Peng H, Cha JJ, Meister S, Lai K, Chen Y, Shen ZX, Manoharan HC, Cui Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2010;10(1):329. https://doi.org/10.1021/nl903663a.

    Article  CAS  PubMed  Google Scholar 

  84. Kong D, Dang W, Cha JJ, Li H, Meister S, Peng H, Liu Z, Cui Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010;10(6):2245. https://doi.org/10.1021/nl101260j.

    Article  CAS  PubMed  Google Scholar 

  85. Dang W, Peng H, Li H, Wang P, Liu Z. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010;10(8):2870. https://doi.org/10.1021/nl100938e.

    Article  CAS  PubMed  Google Scholar 

  86. Li H, Cao J, Zheng W, Chen Y, Wu D, Dang W, Wang K, Peng H, Liu Z. Controlled synthesis of topological insulator nanoplate arrays on mica. J Am Chem Soc. 2012;134(14):6132. https://doi.org/10.1021/ja3021395.

    Article  CAS  PubMed  Google Scholar 

  87. Peng H, Dang W, Cao J, Chen Y, Wu D, Zheng W, Li H, Shen Z-X, Liu Z. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat Chem. 2012;4(4):281–6. https://doi.org/10.1038/nchem.1277.

    Article  CAS  PubMed  Google Scholar 

  88. Zheng W, Xie T, Zhou Y, Chen YL, Jiang W, Zhao S, Wu J, Jing Y, Wu Y, Chen G, Guo Y, Yin J, Huang S, Xu HQ, Liu Z, Peng H. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat Commun. 2015;6:6972. https://doi.org/10.1038/ncomms7972.

    Article  CAS  PubMed  Google Scholar 

  89. Wang F, Li L, Huang W, Li L, Jin B, Li H, Zhai T. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv Funct Mater. 2018;28(33):1802707. https://doi.org/10.1002/adfm.201802707.

    Article  CAS  Google Scholar 

  90. Zhang Y, You Q, Huang W, Hu L, Ju J, Ge Y, Zhang H. Few-layer hexagonal bismuth telluride (Bi2Te3) nanoplates with high-performance UV-Vis photodetection. Nanoscale Adv. 2020;2:1333. https://doi.org/10.1039/d0na00006j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang S, Jiao S, Lu H, Liu S, Nie Y, Gao S, Wang D, Wang J. Morphology evolution and enhanced broadband photoresponse behavior of two-dimensional Bi2Te3 nanosheets. Nanotechnology. 2021;32(43):435707. https://doi.org/10.1088/1361-6528/ac1631.

    Article  CAS  Google Scholar 

  92. Liu JL, Wang H, Li X, Chen H, Zhang ZK, Pan WW, Luo GQ, Yuan CL, Ren YL, Lei W. Ultrasensitive flexible near-infrared photodetectors based on Van der Waals Bi2Te3 nanoplates. Appl Surf Sci. 2019;484:542. https://doi.org/10.1016/j.apsusc.2019.03.295.

    Article  CAS  Google Scholar 

  93. Lee HY, Chen YS, Lin YC, Wu JK, Lee YC, Wu BK, Chern MY, Liang CT, Chang YH. Epitaxial growth of Bi2Te3 topological insulator thin films by temperature-gradient induced physical vapor deposition (PVD). J Alloys Compd. 2016;686:989. https://doi.org/10.1016/j.jallcom.2016.06.266.

    Article  CAS  Google Scholar 

  94. Yang D, Zhang B, Wang D, Wang H, Fang D, Fan J, Yan H, Zou Y, Ma X, Zhang B, Fang X. The dependence of structural, optical and electrical properties on substrates for GaAs nanowires grown by metal organic chemical vapor deposition. Physica E. 2023;149:115671. https://doi.org/10.1016/j.physe.2023.115671.

    Article  CAS  Google Scholar 

  95. Li B, Cui Y, Feng Y, Wu C, Yan Y, Meng M. Study of enhanced photocatalytic performance mechanisms toward a new binary-Bi heterojunction with spontaneously formed interfacial defects. Appl Surf Sci. 2020;532:147412. https://doi.org/10.1016/j.apsusc.2020.147412.

    Article  CAS  Google Scholar 

  96. Jia C, Zhang X, Matras-Postolek K, Huang B, Yang P. Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure toward efficient full solar-spectrum photocatalysis. Carbon. 2018;139:415. https://doi.org/10.1016/j.carbon.2018.07.024.

    Article  CAS  Google Scholar 

  97. Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat. 2019;1:140. https://doi.org/10.1002/inf2.12014.

    Article  CAS  Google Scholar 

  98. Salvato M, Scagliotti M, De Crescenzi M, Castrucci P, De Matteis F, Crivellari M, Pelli Cresi S, Catone D, Bauch T, Lombardi F. Stoichiometric Bi2Se3 topological insulator ultra-thin films obtained through a new fabrication process for optoelectronic applications. Nanoscale. 2020;12(23):12405. https://doi.org/10.1039/d0nr02725a.

    Article  CAS  PubMed  Google Scholar 

  99. Luo S, Li J, Sun T, Liu X, Wei D, Zhou D, Shen J, Wei D. High-performance mid-infrared photodetection based on Bi2Se3 maze and free-standing nanoplates. Nanotechnology. 2021;32(10):105705. https://doi.org/10.1088/1361-6528/abcd64.

    Article  CAS  PubMed  Google Scholar 

  100. Das B, Das NS, Sarkar S, Chatterjee BK, Chattopadhyay KK. Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector. ACS Appl Mater Interfaces. 2017;9(27):22788. https://doi.org/10.1021/acsami.7b00759.

    Article  CAS  PubMed  Google Scholar 

  101. Zeng Z, Wang D, Wang J, Jiao S, Liu D, Zhang B, Zhao C, Liu Y, Liu Y, Xu Z, Fang X, Zhao L. Broadband detection based on 2D Bi2Se3/ZnO nanowire heterojunction. Crystals. 2021;11(2):169. https://doi.org/10.3390/cryst11020169.

    Article  CAS  Google Scholar 

  102. Zhang Y, Zhang F, Xu Y, Huang W, Wu L, Dong Z, Zhang Y, Dong B, Zhang X, Zhang H. Epitaxial growth of topological insulators on semiconductors Bi2Se3/Te@Se toward high-performance photodetectors. Small Methods. 2019;3(12):1900349. https://doi.org/10.1002/smtd.201900349.

    Article  CAS  Google Scholar 

  103. Wang G, Li L, Fan W, Wang R, Zhou S, Lü JT, Gan L, Zhai T. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv Funct Mater. 2018;28(22):1800339. https://doi.org/10.1002/adfm.201800339.

    Article  CAS  Google Scholar 

  104. Kim J, Baek SK, Kim KS, Chang YJ, Choi EJ. Long-term stability study of graphene-passivated black phosphorus under air exposure. Curr Appl Phys. 2016;16(2):165. https://doi.org/10.1016/j.cap.2015.11.010.

    Article  Google Scholar 

  105. Cho AJ, Kwon JY. Hexagonal boron nitride for surface passivation of two-dimensional van der waals heterojunction solar cells. ACS Appl Mater Interfaces. 2019;11(43):39765. https://doi.org/10.1021/acsami.9b11219.

    Article  CAS  PubMed  Google Scholar 

  106. Kim J, Park S, Jang H, Koirala N, Lee JB, Kim UJ, Lee HS, Roh YG, Lee H, Sim S, Cha S, In C, Park J, Lee J, Noh M, Moon J, Salehi M, Sung J, Chee SS, Ham MH, Jo MH, Oh S, Ahn JH, Hwang SW, Kim D, Choi H. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure. ACS Photonics. 2017;4(3):482. https://doi.org/10.1021/acsphotonics.6b00972.

    Article  CAS  Google Scholar 

  107. Zhang H, Song Z, Li D, Xu Y, Li J, Bai C, Man B. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/Bi2Se3. Appl Surf Sci. 2020;509:145290. https://doi.org/10.1016/j.apsusc.2020.145290.

    Article  CAS  Google Scholar 

  108. Wang F, Luo P, Zhang Y, Huang Y, Zhang Q, Li Y, Zhai T. Band structure engineered tunneling heterostructures for high-performance visible and near-infrared photodetection. Sci China-Mater. 2020;63(8):1537. https://doi.org/10.1007/s40843-020-1353-3.

    Article  CAS  Google Scholar 

  109. Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh HY, Pan CX. Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano. 2015;9(2):1886. https://doi.org/10.1021/nn506920z.

    Article  CAS  PubMed  Google Scholar 

  110. Yao J, Zheng Z, Yang G. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J Mater Chem C. 2016;4(33):7831. https://doi.org/10.1039/c6tc01453d.

    Article  CAS  Google Scholar 

  111. Liu H, Zhu X, Sun X, Zhu C, Huang W, Zhang X, Zheng B, Zou Z, Luo Z, Wang X, Li D, Pan A. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano. 2019;13(11):13573. https://doi.org/10.1021/acsnano.9b07563.

    Article  CAS  PubMed  Google Scholar 

  112. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Gang L, Zhang Q, Chen X, Zhang H. Single-layer MoS2 phototransistors. ACS Nano. 2012;6(1):74.

    Article  CAS  PubMed  Google Scholar 

  113. Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater. 2015;27(42):6575. https://doi.org/10.1002/adma.201503340.

    Article  CAS  PubMed  Google Scholar 

  114. Buscema M, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HS, Castellanos-Gomez A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014;14(6):3347. https://doi.org/10.1021/nl5008085.

    Article  CAS  PubMed  Google Scholar 

  115. Shu C, Zhang N, Gao Y, An J, Wen X, Ma W, Liu Z, Sun B, Li S. Multifunctional sensors based on doped indium oxide nanocrystals. ACS Appl Mater Interfaces. 2022;14(21):24648. https://doi.org/10.1021/acsami.2c05280.

    Article  CAS  PubMed  Google Scholar 

  116. Li M, Shi M, Wang B, Zhang C, Yang S, Yang Y, Zhou N, Guo X, Chen D, Li S, Mao H, Xiong J. Quasi-ordered nanoforests with hybrid plasmon resonances for broadband absorption and photodetection. Adv Funct Mater. 2021;31(38):2102840. https://doi.org/10.1002/adfm.202102840.

    Article  CAS  Google Scholar 

  117. Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X. High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on PEDOT:PSS/β-Ga2O3 organic/inorganic p-n junction. J Phys Chem Lett. 2019;10(21):6850. https://doi.org/10.1021/acs.jpclett.9b02793.

    Article  CAS  PubMed  Google Scholar 

  118. Han Y, Wang Y, Fu S, Ma J, Xu H, Li B, Liu Y. Ultrahigh detectivity broad spectrum UV photodetector with rapid response speed based on p-βGa2O3 /n-GaN heterojunction fabricated by a reversed substitution doping method. Small. 2023;19(16):2206664. https://doi.org/10.1002/smll.202206664.

    Article  CAS  Google Scholar 

  119. Fu S, Wang Y, Han Y, Li B, Zhang Y, Ma J, Fu Z, Xu H, Liu Y. β-Ga2O3-based solar-blind photodetector with ultrahigh responsivity via optimizing interdigital electrode parameters. IEEE Electron Device Lett. 2022;43(9):1511. https://doi.org/10.1109/led.2022.3192178.

    Article  CAS  Google Scholar 

  120. Zhang Y, Wang Y, Fu R, Ma J, Xu H, Li B, Liu Y. High performance solar-blind ultraviolet photodetector based on ITO/β-Ga2O3 heterostructure. J Phys D: Appl Phys. 2022;55(32):324002. https://doi.org/10.1088/1361-6463/ac6d28.

    Article  CAS  Google Scholar 

  121. Jin Y, Jiao S, Wang D, Gao S, Wang J. Enhanced UV photoresponsivity of ZnO nanorods decorated with Ag2S/ZnS nanoparticles by successive ionic layer adsorption and reaction method. Nanomaterials. 2021;11(2):461. https://doi.org/10.3390/nano11020461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fu S, Song R, Wang Y, Han Y, Gao C, Ma J, Xu H, Li B, Shen A, Liu Y. Deep ultraviolet photodetector with ultrahigh responsivity based on a nitrogen-doped graphene-modified Polypyrrole/SnO2 organic/inorganic p–n heterojunction. Adv Mater Interfaces. 2023;10(9):2202488. https://doi.org/10.1002/admi.202202488.

    Article  CAS  Google Scholar 

  123. Huang Y, Yu Q, Wang J, Wang J, Yu C, Abdalla JT, Zeng Z, Jiao S, Wang D, Gao S. Plasmon-enhanced self-powered UV photodetectors assembled by incorporating Ag@SiO2 core-shell nanoparticles into TiO2 nanocube photoanodes. ACS Sustain Chem Eng. 2018;6(1):438. https://doi.org/10.1021/acssuschemeng.7b02697.

    Article  CAS  Google Scholar 

  124. Gao C, Liu X, Fang X, Li B, Qiu M, Zhang Q, Zhang H, Zhao H, Wang D, Fang D, Zhai Y, Chu X, Li J, Wang X. Band offset measurement at the MAPbBr3/Al2O3 heterointerface by X-ray photoelectron spectroscopy. J Alloys Compd. 2022;920:165911. https://doi.org/10.1016/j.jallcom.2022.165911.

    Article  CAS  Google Scholar 

  125. Zhang Q, Yao L, Li B, Fang D, Wang D, Li J, Wang X, Han P, Qiu M, Fang X. Defect recombination suppression and carrier extraction improvement for efficient CsPbBr3/SnO2 heterojunction photodetectors. Nanotechnology. 2023;34(23):235706. https://doi.org/10.1088/1361-6528/acb713.

    Article  Google Scholar 

  126. Kong L, Gong J, Hu Q, Capitani F, Celeste A, Hattori T, Sano-Furukawa A, Li N, Yang W, Liu G, Hk M. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect. Adv Funct Mater. 2020;31(9):2009131.

    Article  Google Scholar 

  127. Zhang BW, Fang D, Fang X, Zhao HB, Wang DK, Li JH, Wang XH, Wang DB. InAs/InAsSb type-II superlattice with near room-temperature long-wave emission through interface engineering. Rare Met. 2021;41(3):982. https://doi.org/10.1007/s12598-021-01833-x.

    Article  CAS  Google Scholar 

  128. Liu M, Shi C, Li W, Nan P, Fang X, Ge B, Xu Z, Wang D, Fang D, Wang X, Li J, Zeng L, Du P, Li J. Interfacial characteristics and optical properties of InAs/InAsSb Type II superlattices for the mid-infrared operation. Phys Status Solidi RRL. 2023;17(4):2200412. https://doi.org/10.1002/pssr.202200412.

    Article  CAS  Google Scholar 

  129. Zhu X, He J, Liu W, Zheng Y, Sheng C, Luo Y, Li S, Zhang R, Chu J. Revealing the modulation effects on the electronic band structures and exciton properties by stacking graphene/h-BN/MoS2 schottky heterostructures. ACS Appl Mater Interfaces. 2023;15(1):2468. https://doi.org/10.1021/acsami.2c20100.

    Article  CAS  PubMed  Google Scholar 

  130. An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, Zhang Z, Wang B, Li S, Li D. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater. 2021;32(14):2110119. https://doi.org/10.1002/adfm.202110119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0705201) and Heilongjiang Touyan Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Bo Wang, Xuan Fang, Jia-Mu Cao, Gang Liu or Jin-Zhong Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Wang, DB., Fang, X. et al. Review of 2D Bi2X3 (X = S, Se, Te): from preparation to photodetector. Rare Met. 43, 2349–2370 (2024). https://doi.org/10.1007/s12598-023-02560-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02560-1

Keywords

Navigation