Skip to main content
Log in

Orientation controlled photogenerated carriers on self-supporting CdS/Ni3S2 paper toward photocatalytic hydrogen evolution and biomass upgrading

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems. Present photocatalytic system mainly employs powder photocatalysts, which makes their recovery reliant on expensive separation processes and severely limits their industrial application. Herein, we constructed a novel CdS/Ni3S2 heterostructure using free-standing and flexible nickel fiber paper as the matrix. The regulated energy band structure achieves effective electron–hole separation. The as-synthesized flexible photocatalyst exhibits considerable photocatalytic activity toward the H2 evolution reaction under visible-light irradiation, with an H2 production rate of 5.63 μmol·cm−2 ·h−1 (14.1 mmol·g−1cat· h−1 according to the catalyst loading content). Additionally, the otherwise-wasted excited holes simultaneously drive organic transformations to yield value-added organic products, thus markedly improving the photocatalytic H2 evolution rate. Such a photocatalytic system is scaled up further, where a self-supported 20 cm × 25 cm sample achieves a champion H2 production rate of 60–80 μmol·h−1 under practical sun irradiation. This newly developed self-supported photocatalyst produces opportunities for practical solar H2 production with biomass upgrading.

Graphical abstract

摘要

合理调控能带结构是构建高效光催化系统的有效策略。目前的光催化系统主要采用回收困难的粉末光催化剂,复杂的分离过程严重限制了其工业应用。本文使用自支撑柔性镍纤维纸作为基质,构建了一种新型的CdS/Ni3S2异质结光催化剂。调控后的能带结构实现了有效的电子-空穴分离。合成的柔性自支撑光催化剂在可见光照射下表现出了非常好的光催化产氢活性显著,氢气产率为5.63 μmol‧cm-2‧h-1(根据催化剂负载量计算为14.1 mmol‧ g-1 cat. h-1)。此外,激发的空穴也可促进有机转化,在生成增值有机产品的同时提高光催化产氢效率。随后,将光催化系统进一步扩大规模。在设计的光催化反应体系中和实际太阳辐照下,20 cm × 25 cm的大尺寸样品最高实现了60–80 μmol‧h-1的氢气产率。这种新开发的自支撑光催化剂为实现可持续太阳能驱动的生物质升级及氢能规划化转化奠定了基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schultz DM, Yoon TP. Solar synthesis: prospects in visible light photocatalysis. Science. 2014;343(6174):1239176. https://doi.org/10.1126/science.1239176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang T, Tao L, Zhu X, Chen C, Chen W, Du SQ, Zhou YY, Zhou B, Wang DD, Xie C, Long P, Wang YY, Chen R, Zou YQ, Fu XZ, Li YF, Duan XF, Wang SY. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat Catal. 2021;5(1):66. https://doi.org/10.1038/s41929-021-00721-y.

    Article  CAS  Google Scholar 

  3. Chang B, Pang H, Raziq F, Wang SB, Huang KW, Ye JH, Zhang HB. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy Environ Sci. 2023. https://doi.org/10.1039/D3EE00964E.10.1039/D3EE00964E.

    Article  Google Scholar 

  4. Huang WH, Su CY, Zhu C, Bo TT, Zuo SW, Zhou W, Ren YF, Zhang YN, Zhang J, Rueping M, Zhang HB. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew Chem Int Ed. 2023;135(25):202304634. https://doi.org/10.1002/ange.202304634.

    Article  Google Scholar 

  5. Pang JB, Chang B, Liu H, Zhou WJ. Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 2022;7(1):78. https://doi.org/10.1021/acsenergylett.1c02132.

    Article  CAS  Google Scholar 

  6. Zheng XL, Yang YJ, Liu YH, Deng PL, Li J, Liu WF, Rao P, Jia CM, Huang W, Du YL, Shen YJ, Tian XL. Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4. Rare Met. 2022;41(7):2153. https://doi.org/10.1007/s12598-021-01955-2.

    Article  CAS  Google Scholar 

  7. Xu JJ, Gu HY, Chen MD, Li XP, Zhao HW, Yang HB. Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation. Rare Met. 2022;41(7):2417. https://doi.org/10.1007/s12598-022-01988-1.

    Article  CAS  Google Scholar 

  8. Chang B, Ai Z, Shi D, Zhong Y, Zhang K, Shao Y, Zhang L, Shen J, Wu YZ, Hao XP. p-n tungsten oxide homojunctions for Vis-NIR light-enhanced electrocatalytic hydrogen evolution. J Mater Chem A. 2019;7(33):19573. https://doi.org/10.1039/C9TA06589J.

    Article  CAS  Google Scholar 

  9. Liang HY, Xi HJ, Liu SQ, Zhang XM, Liu HQ. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale. 2019;11:18183. https://doi.org/10.1039/C9NR06222J.

    Article  CAS  PubMed  Google Scholar 

  10. Wu JH, Zhao W, Chen M, Liu CX, Chen JC, Chen Z. Recent advance in visible-light-driven photocatalysis on lead-free halide perovskites. Chin J Rare Met. 2022;46(1):96. https://doi.org/10.13373/j.cnki.cjrm.XY21040007

    Google Scholar 

  11. Feng C, Wu ZP, Huang KW, Ye J, Zhang H. Surface modification of 2D photocatalysts for solar energy conversion. Adv Mater. 2022;34(23):e2200180. https://doi.org/10.1002/adma.202200180.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou P, Zhang Q, Xu Z, Shang QY, Wang L, Chao YG, Li YJ, Chen H, Lv F, Zhang Q, Gu L, Guo SJ. Atomically dispersed CoP3 on CdS nanorods with electron-rich feature boosts photocatalysis. Adv Mater. 2020;32(7):e1904249. https://doi.org/10.1002/adma.201904249.

    Article  CAS  PubMed  Google Scholar 

  13. Yong Z, Gong S, Chesman ASR, Shi QQ, Yap LW, Hora Y, Fu RF, Lin F, Cheng WL. Conformal coating of CdS onto flexible enokitake-like standing gold nanowire arrays for omnidirectional low-light-intensity photocatalysis. Nano Energy. 2023;108:108227. https://doi.org/10.1016/j.nanoen.2023.108227.

    Article  CAS  Google Scholar 

  14. Wu C, Huang W, Liu H, Lv K, Li Q. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Appl Catal B-Environ. 2023;330:122653. https://doi.org/10.1016/j.apcatb.2023.122653.

    Article  CAS  Google Scholar 

  15. Wang W, Tao Y, Fan J, Yan ZP, Shang H, Phillips DL, Chen M, Li GS. Fullerene-graphene acceptor drives ultrafast carrier dynamics for sustainable CdS photocatalytic hydrogen evolution. Adv Func Mater. 2022;32(23):2201357. https://doi.org/10.1002/adfm.202201357.

    Article  CAS  Google Scholar 

  16. Yang YL, Zhang DN, Xiang QJ. Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale. 2019;11:18797. https://doi.org/10.1039/C9NR07242J.

    Article  CAS  PubMed  Google Scholar 

  17. Zulfiqar S, Liu S, Rahman N, Tang H, Shah S, Yu XH, Liu QQ. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Met. 2021;40(9):2381. https://doi.org/10.1007/s12598-020-01616-w.

    Article  CAS  Google Scholar 

  18. Li CQ, Du X, Jiang S, Liu Y, Niu ZL, Liu ZY, Yi SS, Yue XZ. Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv Sci. 2022;9(24):e2201773. https://doi.org/10.1002/advs.202201773.

    Article  CAS  Google Scholar 

  19. Bie C, Zhu B, Wang L, Yu HG, Jiang CH, Chen T, Yu JG. A bifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2 evolution and pyruvic acid synthesis. Angew Chem Int Ed. 2022;61(44): e202212045. https://doi.org/10.1002/anie.202212045.

    Article  CAS  Google Scholar 

  20. Zhao L, Dong T, Du J, Liu H, Yuan HF, Wang YJ, Jia J, Liu H, Zhou WJ. Synthesis of CdS/MoS2 nanooctahedrons heterostructure with a tight interface for enhanced photocatalytic H2 evolution and biomass upgrading. Solar RRL. 2020;5(2):2000415. https://doi.org/10.1002/solr.202000415.

    Article  CAS  Google Scholar 

  21. He B, Bie C, Fei X, Cheng B, Yu JG, Ho WK, Al-Ghamdi AA, Wageh S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl Catal B-Environ. 2021;288:119994. https://doi.org/10.1016/j.apcatb.2021.119994.

    Article  CAS  Google Scholar 

  22. Quan Y, Wang G, Li D, Jin Z. CdS reinforced with CoSx/NiCo-LDH core-shell co-catalyst demonstrate high photocatalytic hydrogen evolution and durability in anhydrous ethanol. Chem A European J. 2021;27(66):16448. https://doi.org/10.1002/chem.202102726.

    Article  CAS  Google Scholar 

  23. Liu W, Wang P, Ao Y, Chen J, Gao X, Jia BH, Ma TY. Directing charge transfer in a chemical-bonded BaTiO3@ReS2 Schottky heterojunction for piezoelectric enhanced photocatalysis. Adv Mater. 2022;34(29):e2202508. https://doi.org/10.1002/adma.202202508.

    Article  CAS  PubMed  Google Scholar 

  24. Deng L, Zhang K, Shi D, Liu SF, Xu DQ, Shao YL, Shen JX, Wu YZ, Hao XP. Rational design of Schottky heterojunction with modulating surface electron density for high-performance overall water splitting. Appl Catal B-Environ. 2021;299: 120660. https://doi.org/10.1016/j.apcatb.2021.120660.

    Article  CAS  Google Scholar 

  25. Tan M, Yu C, Luan Q, Liu C, Dong WJ, Su YJ, Lj Q, Gao L, Lu QP, Bai Y. The Mott-Schottky heterojunction MoC@NG@ZIS with enhanced kinetic response for promoting photocatalytic hydrogen production. J Mater Chem A. 2022;10(40):21465. https://doi.org/10.1039/D2TA05932K.

    Article  CAS  Google Scholar 

  26. An X, Kays JC, Lightcap IV, Ouyang T, Dennis AM, Reinhard BM. Wavelength-dependent bifunctional plasmonic photocatalysis in Au/chalcopyrite hybrid nanostructures. ACS Nano. 2022;16(4):6813. https://doi.org/10.1021/acsnano.2c01706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang H, Verhaeghe D, Weng B, Ghosh B, Zhang HW, Hofkens J, Steele JA, Roeffaers MBJ. Metal halide perovskite based heterojunction photocatalysts. Angew Chem Int Ed. 2022;134(24):202203261. https://doi.org/10.1002/ange.202203261.

    Article  Google Scholar 

  28. Meng Y, Jian Y, Li J, Wu HG, Zhang H, Saravanamurugan S, Yang S, Li H. Surface-active site engineering: synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chem Engin J. 2023;452:139477. https://doi.org/10.1016/j.cej.2022.139477.

    Article  CAS  Google Scholar 

  29. Dou Z, Zhang Z, Zhou H, Wang M. Photocatalytic upgrading of lignin oil to diesel precursors and hydrogen. Angew Chem Int Ed. 2021;60(30):16399. https://doi.org/10.1002/anie.202105692.

    Article  CAS  Google Scholar 

  30. Huang Z, Luo N, Zhang C, Wang F. Radical generation and fate control for photocatalytic biomass conversion. Nature Rev Chem. 2022;6(3):197. https://doi.org/10.1038/s41570-022-00359-9.

    Article  Google Scholar 

  31. Shan T, Luo L, Chen T, Deng LX, Li MQ, Yang XH, Shen LJ, Yang MQ. Visible-light-driven anaerobic oxidative upgrading of biomass-derived HMF for co-production of DFF and H2 over a 1D Cd0.7Zn0.3S/NiSe2 Schottky junction. Green Chem. 2023;25:2745. https://doi.org/10.1039/D3GC00026E.

    Article  CAS  Google Scholar 

  32. Fan Y, Qin X, Zhai Y, Huang Z, Wu Z, Tan M, Deng J, Zhu Y, Li H. Decarboxylation of lauric acids to long-chain alkenes via novel biochar-based photocatalysis under ambient conditions. Biomass Bioenergy. 2022;167:106649. https://doi.org/10.1016/j.biombioe.2022.106649.

    Article  CAS  Google Scholar 

  33. Matter F, Niederberger M. The importance of the macroscopic geometry in gas-phase photocatalysis. Adv Sci. 2022;9(13): e2105363. https://doi.org/10.1002/advs.202105363.

    Article  CAS  Google Scholar 

  34. Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem. 2021;97:111. https://doi.org/10.1016/j.jiec.2021.02.017.

    Article  CAS  Google Scholar 

  35. Jabbar ZH, Graimed BH. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. J Water Process Eng. 2022;47:102671. https://doi.org/10.1016/j.jwpe.2022.102671.

    Article  Google Scholar 

  36. Ai Z, Shao Y, Chang B, Huang B, Wu Y, Hao X. Effective orientation control of photogenerated carrier separation via rational design of a Ti3C2(TiO2)@CdS/MoS2 photocatalytic system. Appl Catal B-Environ. 2019;242:202. https://doi.org/10.1016/j.apcatb.2018.09.101.

    Article  CAS  Google Scholar 

  37. Zhong Y, Wu Y, Chang B, Ai Z, Zhang K, Shao Y, Zhang L, Hao X. A CoP/CdS/WS2 p-n-n tandem heterostructure: a novel photocatalyst for hydrogen evolution without using sacrificial agents. J Mater Chem A. 2019;7(24):14638. https://doi.org/10.1039/C9TA03721G.

    Article  CAS  Google Scholar 

  38. Wang Z, Shen S, Lin Z, Tao W, Zhang Q, Meng F, Gu L, Zhong W. Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv Func Mater. 2022;32(18):2112832. https://doi.org/10.1002/adfm.202112832.

    Article  CAS  Google Scholar 

  39. Zhang M, Nie S, Cheng T, Feng Y, Zhang C, Zheng L, Wu L, Hao W, Ding Y. Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy. 2021;90: 106635. https://doi.org/10.1016/j.nanoen.2021.106635.

    Article  CAS  Google Scholar 

  40. Li K, Han M, Chen R, Li S, Xie S, Mao C, Bu X, Cao X, Dong L, Feng P, Lan Y. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv Mater. 2016;28(40):8906. https://doi.org/10.1002/adma.201601047.

    Article  CAS  PubMed  Google Scholar 

  41. Ai Z, Zhao G, Zhong Y, Shao Y, Huang B, Wu Y, Hao X. Phase junction CdS: high efficient and stable photocatalyst for hydrogen generation. Appl Catal B-Environ. 2018;221:179. https://doi.org/10.1016/j.apcatb.2017.09.002.

    Article  CAS  Google Scholar 

  42. Ai Z, Zhang K, Chang B, Shao Y, Zhang L, Wu Y, Hao X. Construction of CdS@Ti3C2@CoO hierarchical tandem p-n heterojunction for boosting photocatalytic hydrogen production in pure water. Chem Eng J. 2020;383: 123130. https://doi.org/10.1016/j.cej.2019.123130.

    Article  CAS  Google Scholar 

  43. Wang N, Cheong S, Yoon DE, Lu P, Lee H, Lee YK, Park YS, Lee DC. Efficient, Selective CO2 photoreduction enabled by facet-resolved redox-active sites on colloidal CdS nanosheets. J Am Chem Soc. 2022;144(37):16974. https://doi.org/10.1021/jacs.2c06164.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Zhou Y, Xu M, Chen A, Ni Z, Akdim O, Wågberg T, Huang X, Hu G. Interface engineering on amorphous/crystalline hydroxides/sulfides heterostructure nanoarrays for enhanced solar water splitting. ACS Nano. 2023;17(1):636. https://doi.org/10.1021/acsnano.2c09880.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao L, Chang B, Dong T, Yuan H, Li Y, Tang Z, Liu Z, Liu H, Zhang X, Zhou W. Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions. J Mater Chem A. 2022;10(37):20071. https://doi.org/10.1039/D2TA01982E.

    Article  CAS  Google Scholar 

  46. Feng C, Tang L, Deng Y, Wang J, Liu Y, Ouyang X, Yang H, Yu J, Wang J. A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl Catal B-Environ. 2021;281: 119539. https://doi.org/10.1016/j.apcatb.2020.119539.

    Article  CAS  Google Scholar 

  47. Shi D, Chang B, Ai Z, Jiang H, Chen F, Shao Y, Shen J, Wu Y, Hao X. Boron carbonitride with tunable B/N Lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale. 2021;13(5):2849. https://doi.org/10.1039/D0NR06857H.

    Article  CAS  PubMed  Google Scholar 

  48. Deng L, Chang B, Shi D, Yao X, Shao Y, Shen J, Zhang B, Wu Y, Hao X. MXene decorated by phosphorus-doped TiO2 for photo-enhanced electrocatalytic hydrogen evolution reaction. Renew Energy. 2021;170:858. https://doi.org/10.1016/j.renene.2021.02.040.

    Article  CAS  Google Scholar 

  49. Zhao Y, You J, Wang L, Bao W, Yao R. Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction. Int J Hydrogen Energy. 2021;46(79):39146. https://doi.org/10.1016/j.ijhydene.2021.09.137.

    Article  CAS  Google Scholar 

  50. Wang F, Zhang Y, Zhang J, Yuan W, Li Y, Mao J, Liu C, Chen C, Liu H, Zheng S. In situ electrochemically formed Ag/NiOOH/Ni3S2 heterostructure electrocatalysts with exceptional performance toward oxygen evolution reaction. ACS Sustain Chem Engin. 2022;10(18):5976. https://doi.org/10.1021/acssuschemeng.2c00760.

    Article  CAS  Google Scholar 

  51. Feng C, Ouyang X, Deng Y, Wang J, Tang L. A novel g-C3N4/g-C3N4-x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline. J Hazard Mater. 2023;441:129845. https://doi.org/10.1016/j.jhazmat.2022.129845.

    Article  CAS  PubMed  Google Scholar 

  52. Han G, Jin YH, Burgess RA, Dickenson NE, Cao XM, Sun Y. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J Am Chem Soc. 2017;139(44):15584. https://doi.org/10.1021/jacs.7b08657.

    Article  CAS  PubMed  Google Scholar 

  53. Liu H, Yu J, Chen Y, Zhou Z, Xiong G, Zeng L, Li H, Liu Z, Zhao L, Wang J, Chu B, Liu H, Zhou W. One-step sublimation and epitaxial growth of CdS-Cd heterogeneous nanoparticles on S-Doped MoO2 nanosheets for efficient visible light-driven photocatalytic H2 generation. ACS Appl Mater Interfaces. 2020;12(2):2362. https://doi.org/10.1021/acsami.9b17216.

    Article  CAS  PubMed  Google Scholar 

  54. Feng C, Tang L, Deng Y, Wang J, Luo J, Liu Y, Ouyang X, Yang H, Yu J, Wang J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv Func Mater. 2020;30(39):2001922. https://doi.org/10.1002/adfm.202001922.

    Article  CAS  Google Scholar 

  55. Yang J, Jing J, Li W, Zhu Y. Electron donor-acceptor interface of TPPS/PDI boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv Sci. 2022;9(17):2201134. https://doi.org/10.1002/advs.202201134.

    Article  CAS  Google Scholar 

  56. Chen L, Chen C, Yang Z, Li S, Chu C, Chen B. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv Func Mater. 2021;31(46):2105731. https://doi.org/10.1002/adfm.202105731.

    Article  CAS  Google Scholar 

  57. She X, Liu L, Ji H, Mo Z, Li Y, Huang L, Du D, Xu H, Li H. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B-Environ. 2016;187:144. https://doi.org/10.1016/j.apcatb.2015.12.046.

    Article  CAS  Google Scholar 

  58. Niu P, Zhang L, Liu G, Cheng H-M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Func Mater. 2012;22(22):4763. https://doi.org/10.1002/adfm.201200922.

    Article  CAS  Google Scholar 

  59. Zhang G, Huang S, Li X, Chen D, Li N, Xu Q, Li H, Lu J. Internal electric field engineering of bifunctional 2D/2D heterojunction photocatalyst for cooperative H2 production and alcohol conversion. Appl Catal B-Environ. 2023;331:122725. https://doi.org/10.1016/j.apcatb.2023.122725.

    Article  CAS  Google Scholar 

  60. Li X, Hu J, Yang T, Yang X, Qu J, Li C. Efficient photocatalytic H2-evolution coupled with valuable furfural-production on exquisite 2D/2D LaVO4/g-C3N4 heterostructure. Nano Energy. 2022;92:106714. https://doi.org/10.1016/j.nanoen.2021.106714.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972147, 52022037 and 52202366), Taishan Scholars Project Special Funds (No. tsqn201812083), the Innovative Team Project of Jinan (No. 2021GXRC019), the Natural Science Foundation of Shandong Province (Nos. ZR2019YQ20, ZR2021QE011, ZR2021JQ15 and ZR2022YQ42) and the King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Chang or Wei-Jia Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11551 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Cao, Q., Li, GX. et al. Orientation controlled photogenerated carriers on self-supporting CdS/Ni3S2 paper toward photocatalytic hydrogen evolution and biomass upgrading. Rare Met. 43, 2015–2025 (2024). https://doi.org/10.1007/s12598-023-02555-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02555-y

Keywords

Navigation