Skip to main content

Advertisement

Log in

Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Transition metal–based catalysts are considered to be promising materials to replace noble metal catalysts for electrocatalytic water splitting. Herein, a flexible electrode composed of Co-Ni-P ternary catalysts and carbon fiber paper substrate (Co-Ni-P/CFP) was successfully fabricated and applied in water electrolysis. The Co-Ni-P coatings were deposited on CFP by a one-step cyclic voltammetric electrodeposition method and the surface of the composite material exhibits nano-reticular structure. The formation mechanism was also discussed according to the results of material characterization. Notably, the Co-Ni-P/CFP flexible electrode exhibited superior catalytic performance for both hydrogen and oxygen evolution reactions in alkaline media, which could achieve 10 mA/cm2 current density with overpotential of 89 mV for HER and 320 mV for OER. Moreover, the Co-Ni-P/CFP electrode could also be used as both anode and cathode electrode to drive overall water splitting and required only 1.64 V to achieve a current density of 10 mA/cm2, which was very close to that of the commercial combination of Pt/C and IrO2. This affordable and easily obtained electrode offers a new avenue to develop earth-abundant resource catalysts for water electrolysis system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. You B, Sun Y (2018) Innovative strategies for electrocatalytic water splitting. Acc Chem Res 51(7):1571–1580

    Article  CAS  PubMed  Google Scholar 

  2. Chen Z, Xu H, Ha Y, Li X, Liu M, Wu R (2019) Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl Catal B-Environ 250:213–223

    Article  CAS  Google Scholar 

  3. Chen Y-C, Yang K-H, Huang C-Y, Wu Z-J, Hsu Y-K (2019) Overall photoelectrochemical water splitting at low applied potential over ZnO quantum dots/nanorods homojunction. Chem Eng J 368:746–753

    Article  CAS  Google Scholar 

  4. Zhao Y, Luo M, Chu S, Peng M, Liu B, Wu Q, Liu P, de Groot FMF, Tan Y (2019) 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy 59:146–153

    Article  CAS  Google Scholar 

  5. Qin Q, Jang H, Chen L, Li P, Wei T, Liu X, Cho J (2019) Coupling a low loading of IrP2, PtP2, or Pd3P with heteroatom-doped nanocarbon for overall water-splitting cells and zinc-air batteries. ACS Appl Mater Interfaces 11(18):16461–16473

    Article  CAS  PubMed  Google Scholar 

  6. Zuo Q, Liu T, Chen C, Ji Y, Gong X, Mai Y, Zhou Y (2019) Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem Int Ed 58(30):10198–10203

    Article  CAS  Google Scholar 

  7. Gao H, Liao S, Zhang Y, Wang L, Zhang L (2017) Methanol tolerant core-shell RuFeSe@Pt/C catalyst for oxygen reduction reaction. Int J Hydrog Energy 42(32):20658–20668

    Article  CAS  Google Scholar 

  8. Xu X, Tian X, Zhong Z, Kang L, Yao J (2019) In-situ growth of iron/nickel phosphides hybrid on nickel foam as bifunctional electrocatalyst for overall water splitting. J Power Sources 424:42–51

    Article  CAS  Google Scholar 

  9. Sun X, Liu F, Chen X, Li C, Yu J, Pan M (2019) Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochim Acta 307:206–213

    Article  CAS  Google Scholar 

  10. Lu Y, Hou W, Yang D, Chen Y (2019) CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim Acta 307:543–552

    Article  CAS  Google Scholar 

  11. Ge R, Li W, Huo J, Liao T, Cheng N, Du Y, Zhu M, Li Y, Zhang J (2019) Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Appl Catal B-Environ 246:129–139

    Article  CAS  Google Scholar 

  12. Lv X, Ren J, Wang Y, Liu Y, Yuan Z-Y (2019) Well-defined phase-controlled cobalt phosphide nanoparticles encapsulated in nitrogen-doped graphitized carbon shell with enhanced electrocatalytic activity for hydrogen evolution reaction at all-pH. ACS Sustain Chem Eng 7(9):8993–9001

    Article  CAS  Google Scholar 

  13. Zhang A, Zhou J, Das P, Xiao Y, Gong F, Li F, Wang L, Zhang L, Wang L, Cao Y, Duan H (2018) Revisiting metal electrodeposition in porous anodic alumina: toward tailored preparation of metal nanotube arrays. J Electrochem Soc 165(3):D129–D134

    Article  CAS  Google Scholar 

  14. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y (2019) Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater 31(17):1807134

    Article  Google Scholar 

  15. Che Q, Li Q, Tan Y, Chen X, Xu X, Chen Y (2019) One-step controllable synthesis of amorphous (Ni-Fe)S-x/NiFe(OH)(y) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi industrial water splitting at large-current-density. Appl Catal B-Environ 246:337–348

    Article  CAS  Google Scholar 

  16. Guo T, Zhang L, Yun S, Zhang J, Kang L, Li Y, Li H, Huang A (2019) One-step synthesis of bimetallic Ni-Fe phosphates and their highly electrocatalytic performance for water oxidation. Mater Res Bull 114:80–84

    Article  CAS  Google Scholar 

  17. Kempler PA, Gonzalez MA, Papadantonakis KM, Lewis NS (2018) Hydrogen evolution with minimal parasitic light absorption by dense Co–P catalyst films on structured p-Si photocathodes. ACS Energy Lett 3(3):612–617

    Article  CAS  Google Scholar 

  18. Liu M, Li J (2016) Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl Mater Interfaces 8(3):2158–2165

    Article  CAS  PubMed  Google Scholar 

  19. Panda C, Menezes PW, Zheng M, Orthmann S, Driess M (2019) In situ formation of nanostructured core-shell Cu3N-CuO to promote alkaline water electrolysis. ACS Energy Lett 4(3):747–754

    Article  CAS  Google Scholar 

  20. Choi K, Moon IK, Oh J (2019) An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. J Mater Chem A 7(4):1468–1478

    Article  CAS  Google Scholar 

  21. Najafi L, Bellani S, Oropesa-Nunez R, Prato M, Martin-Garcia B, Brescia R, Bonaccorso F (2019) Carbon nanotube-supported MoSe2 Holey Flake:Mo2C Ball Hybrids for bifunctional pH-universal water splitting. ACS Nano 13(3):3162–3176

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Gao H, Fang H, Wang S, Sun J (2016) Effect of methanol on the electrochemical behaviour and surface conductivity of niobium carbide-modified stainless steel for DMFC bipolar plate. Int J Hydrog Energy 41(33):14864–14871

    Article  CAS  Google Scholar 

  23. Jia Y, Gao X, Teng C, Li X, Liu Y, Zhi M, Hong Z (2019) Co2Ni alloy/N-doped CNTs composite as efficient hydrogen evolution reaction catalyst in alkaline medium. J Alloys Compd 791:779–785

    Article  CAS  Google Scholar 

  24. Huang H, Yu C, Huang H, Zhao C, Qiu B, Yao X, Li S, Han X, Guo W, Dai L, Qiu J (2019) Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy 58:778–785

    Article  CAS  Google Scholar 

  25. Zhang A, Gong F, Xiao Y, Guo X, Li F, Wang L, Zhang Y, Zhang L (2017) Electrochemical reductive doping and interfacial impedance of TiO2 nanotube arrays in aqueous and aprotic solvents. J. Electrochem Soc 164(2):H91–H96

    Article  CAS  Google Scholar 

  26. Yang Y, Luan X, Dai X, Zhang X, Qiao H, Zhao H, Yong J, Yu L, Han J, Zhang J (2019) Partially sulfurated ultrathin nickel-iron carbonate hydroxides nanosheet boosting the oxygen evolution reaction. Electrochim Acta 309:57–64

    Article  CAS  Google Scholar 

  27. Xu J, Zhao Y, Li M, Fan G, Yang L, Li F (2019) A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochim Acta 307:275–284

    Article  CAS  Google Scholar 

  28. Fang H, Chen G, Wang L, Yan J, Zhang L, Gao K, Zhang Y, Wang L (2018) Facile fabrication of hierarchical film composed of Co(OH)2@Carbon nanotube core/sheath nanocables and its capacitive performance. RSC Adv 8(67):38550–38555

    Article  CAS  Google Scholar 

  29. Li G, Zhang X, Zhang H, Liao C, Jiang G (2019) Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction. Appl Catal B-Environ 249:147–154

    Article  CAS  Google Scholar 

  30. Jiang M, Li J, Li J, Zhao Y, Pan L, Cao Q, Wang D, Du Y (2019) Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale 11(19):9654–9660

    Article  CAS  PubMed  Google Scholar 

  31. Cobo S, Heidkamp J, Jacques P-A, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V, Dau H, Palacin S, Fontecave M, Artero V (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11(9):802–807

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Tao L, Xiao X, Jiang X, Wang M, Shen Y (2019) Hybridizing NiCo2O4 and amorphous NixCoy layered double hydroxides with remarkably improved activity toward efficient overall water splitting. ACS Sustain Chem Eng 7(5):4784–4791

    Article  CAS  Google Scholar 

  33. Zhang Y, Gao H-l, X-d J, Wang S-w, Yan J, Luo H-w, Gao K-z, Fang H, A-q Z, Wang L-z (2018) NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials. J Renew Sustain Energy 10(5):054101

    Article  Google Scholar 

  34. Hui L, Jia D, Yu H, Xue Y, Li Y (2019) Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting. ACS Appl Mater Interfaces 11(3):2618–2625

    Article  CAS  PubMed  Google Scholar 

  35. Hui L, Xue Y, Jia D, Yu H, Zhang C, Li Y (2018) Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting. Adv Energy Mater 8(20):1800175

    Article  Google Scholar 

  36. Kosasang S, Ma N, Phattharasupakun N, Sawangphruk M (2019) Lithium intercalated-layered manganese oxide and reduced graphene oxide composite as a bifunctional electrocatalyst for ORR and OER. J Electrochem Soc 166(8):A1543–A1549

    Article  CAS  Google Scholar 

  37. Fang H, Meng F, Yan J, G-y C, Zhang L, Wu S, Zhang S, Wang L, Zhang Y (2019) Fe3O4 hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Adv 9(35):20107–20112

    Article  CAS  Google Scholar 

  38. Zheng X, Cao Y, Liu D, Cai M, Ding J, Liu X, Wang J, Hu W, Zhong C (2019) Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl Mater Interfaces 11(17):15662–15669

    Article  CAS  PubMed  Google Scholar 

  39. Raja DS, Chuah X-F, Lu S-Y (2018) In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv Energy Mater 8(23):1801065

    Article  Google Scholar 

  40. Yao K, Zhai M, Ni Y (2019) alpha-Ni(OH)2center dot 0.75H2O nanofilms on Ni foam from simple NiCl2 solution: fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochim Acta 301:87–96

    Article  CAS  Google Scholar 

  41. Bao J, Wang Z, Xie J, Xu L, Lei F, Guan M, Zhao Y, Huang Y, Li H (2019) A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem Commun 55(24):3521–3524

    Article  CAS  Google Scholar 

  42. Li J-S, Kong L-X, Wu Z, Zhang S, Yang X-Y, Sha J-Q, Liu G-D (2019) Polydopamine-assisted construction of cobalt phosphide encapsulated in N-doped carbon porous polyhedrons for enhanced overall water splitting. Carbon 145:694–700

    Article  CAS  Google Scholar 

  43. Wu Z, Nie D, Song M, Jiao T, Fu G, Liu X (2019) Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 11(15):7506–7512

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Kong B, Zhao D, Wang H, Selomulya C (2017) Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15:26–55

    Article  CAS  Google Scholar 

  45. Joo J, Kim T, Lee J, Choi S-I, Lee K (2019) Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater 31(14):1806682

    Article  Google Scholar 

  46. Zhang L, Ding X, Cong M, Wang Y, Zhang X (2019) Self-adaptive amorphous Co2P@Co2P/Co-polyoxometalate/nickel foam as an effective electrode for electrocatalytic water splitting in alkaline electrolyte. Int J Hydrog Energy 44(18):9203–9209

    Article  CAS  Google Scholar 

  47. Du H, Kong R-M, Guo X, Qu F, Li J (2018) Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 10(46):21617–21624

    Article  CAS  PubMed  Google Scholar 

  48. Guo M, Qu Y, Zeng F, Yuan C (2018) Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction. Electrochim Acta 292:88–97

    Article  CAS  Google Scholar 

  49. Huang Q-Z, Tao Z-J, Ye L-Q, Yao H-C, Li Z-J (2018) Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl Catal B-Environ 237:689–698

    Article  CAS  Google Scholar 

  50. Shanmugam S, Sivanantham A, Matsunaga M, Simon U, Osaka T (2019) Metal phosphide nanoparticles embedded in carbon as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 297:749–754

    Article  CAS  Google Scholar 

  51. Sumboja A, An T, Goh HY, Lubke M, Howard DP, Xu Y, Handoko D, Zong Y, Liu Z (2018) One-step facile synthesis of cobalt phosphides for hydrogen evolution reaction catalysts in acidic and alkaline medium. ACS Appl Mater Interfaces 10(18):15673–15680

    Article  CAS  PubMed  Google Scholar 

  52. Lin C, Gao Z, Yang J, Liu B, Jin J (2018) Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. J Mater Chem A 6(15):6387–6392

    Article  CAS  Google Scholar 

  53. Jiang N, You B, Sheng M, Sun Y (2015) Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew Chem Int Ed 54(21):6251–6254

    Article  CAS  Google Scholar 

  54. Zhu Y-P, Liu Y-P, Ren T-Z, Yuan Z-Y (2015) Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv Funct Mater 25(47):7337–7347

    Article  CAS  Google Scholar 

  55. Narayanan T, Selvakumar S, Stephen A (2003) Electroless Ni-Co-P ternary alloy deposits: preparation and characteristics. Surf Coat Technol 172(2-3):298–307

    Article  Google Scholar 

  56. Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddardiii WA, Chen S, Ren Z (2018) High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun 9(1):2551

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21501152), the Key Program of Henan Province for Science and Technology (Grant No. 172102210067), and the Doctoral Research Foundation of Zhengzhou University of Light Industry (Grant No. 2014BSJJ057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Xiao, Y., Cao, Y. et al. Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper. J Solid State Electrochem 25, 1503–1512 (2021). https://doi.org/10.1007/s10008-021-04929-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04929-7

Navigation