Skip to main content
Log in

A review on WO3-based composite photocatalysts: synthesis, catalytic mechanism and diversified applications

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Photocatalysis as an emerging “green” energy conversion technology has attracted domestic and international attention. This technology uses semiconductor photocatalysts to convert solar energy into directly usable chemical energy, showing great potential for application in environmental pollutant purification and clean energy production, with broad development prospects. Among many semiconductor materials, tungsten trioxide (WO3) is favored by researchers in the field of photocatalysis because of its good visible light response and excellent valence band hole oxidation properties. Currently, a large number of photocatalysts based on WO3, in particular WO3-based composite photocatalysts, have been reported, and their applications cover a wide range of fields. In order to promote the development of WO3-based photocatalysts and provide a reference for colleagues, we present a systematic summary of the applications and research progress of WO3-based composites in the field of photocatalysis in recent years. Starting from the structural properties of WO3 itself, this article summarizes the preparation methods and structure–activity relationships of WO3-based composite photocatalysts. Subsequently, it introduces the current application status of existing WO3-based composite photocatalysts in CO2 reduction, hydrogen production, nitrogen fixation, and pollutant removal. Finally, the development prospects were analyzed.

Graphical abstract

摘要

光催化作为一种新兴的“绿色”能源转换技术,受到了国内外的广泛关注。该技术利用半导体光催化剂将太阳能转化为可直接利用的化学能,在环境污染物净化和清洁能源生产方面具有巨大的应用潜力,发展前景广阔。在众多半导体材料中,三氧化钨(WO3)因其良好的可见光响应和优异的价带空穴氧化性能而受到光催化领域研究人员的青睐。目前,基于WO3的光催化剂,特别是基于WO3的复合光催化剂已经被大量报道,其应用领域非常广泛。为了促进wo3基光催化剂的发展,并为同行提供参考,我们对近年来wo3基复合材料在光催化领域的应用和研究进展进行了系统的总结。本文从WO3本身的结构性质出发,综述了WO3基复合光催化剂的制备方法和构效关系。随后介绍了现有wo3基复合光催化剂在CO2还原、制氢、固氮和污染物去除等方面的应用现状。最后对其发展前景进行了分析。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drmosh QA, Alade IO, Alkanad K, Alnaggar G, Khan A, Khan MY, Elsayed KA, Manda AA, Hossain MK. WO3/BP/g-C3N4 based cauliflower nanocomposite fabricated by pulsed laser ablation for overall water splitting. Opt Laser Technol. 2022;151: 108114. https://doi.org/10.1016/j.optlastec.2022.108014.

    Article  CAS  Google Scholar 

  2. Bruni G, Martini C, Martini F, Salvio M. On the energy performance and energy saving potential of the pharmaceutical industry: a study based on the Italian energy audits. Processes. 2023;11(4):1114. https://doi.org/10.1016/j.optlastec.2022.108014.

    Article  CAS  Google Scholar 

  3. Otgonbayar Z, Oh WC. Synthesis of 2D/2D structural Ti3C2 MXene/g-C3N4 via the schottky junction with metal oxides: photocatalytic CO2 reduction with a cationic scavenger. Appl Mater. 2023;32:101814. https://doi.org/10.1016/j.apmt.2023.101814.

    Article  Google Scholar 

  4. Jin FX, Ma XJ, Sun YD, Zhang X, Zhang ZQ, Guo SQ. Modification of Nb2O5-based photocatalytic materials and application in water treatment. Chin J Rare Met. 2023;47(1):59. https://doi.org/10.13373/j.cnki.cjrm.XY22080002.

  5. Solomey N, Folkerts J, Meyer H, Gimar C, Novak J, Doty B, English T, Buchele L, Nelsen A, McTaggart R, Christl M. Concept for a space-based near-solar neutrino detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2023;1049:168064. https://doi.org/10.1016/j.nima.2023.168064.

    Article  CAS  Google Scholar 

  6. Zhang DP, Li YX, Li Y, Zhan SH. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat. 2022;3:417. https://doi.org/10.1002/smm2.1095.

    Article  CAS  Google Scholar 

  7. Reichle A, Reiser O. Light-induced homolysis of copper(II)-complexes—a perspective for photocatalysis. Chem Sci. 2023;14(17):4449. https://doi.org/10.1039/d3sc00388d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guan G, Ye E, You M, Li Z. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: current status and future perspectives. Small. 2020;16(19):1907087. https://doi.org/10.1002/smll.201907087.

    Article  CAS  Google Scholar 

  9. Wang J, Li X, Zhang T, Qian X, Wang T, Zhao Y. Rational design of photo−electro−catalytic systems for the transformation of plastic wastes. Appl Catal B Environ. 2023;332: 122744. https://doi.org/10.1016/j.apcatb.2023.122744.

    Article  CAS  Google Scholar 

  10. Li YH, Ren ZT, Duan YY, Ouyang P, Lv KL. Research progress of zinc stannate-based photocatalysts. Chin J Rare Met. 2023;47(1):73. https://doi.org/10.13373/j.cnki.cjrm.XY22060007.

  11. Zhao ZL, Yan R, Qu Y, Jing LQ. Progress in photocatalytic degradation of triazine pollutants. Chin J Rare Met. 2023;47(1):90. https://doi.org/10.13373/j.cnki.cjrm.XY22080015.

  12. Chu HY, Wang CC, Liu A. Algae removal via photocatalysis over MOFs-based materials: a mini review. Chin J Rare Met. 2023;47(1):116. https://doi.org/10.13373/j.cnki.cjrm.XY22040029.

  13. Li JJ, Liang K, Zhang ZN, Zhang HQ, Xi HX, Duan CX. Recent advances in application of nanoscale hierarchically porous metal-organic frameworks. Chin J Rare Met. 2023;47(7):1013. https://doi.org/10.13373/j.cnki.cjrm.XY22100004.

  14. Li XX, Liu XC, Liu C, Zeng JM, Qi XP. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten. 2023;5(1):100. https://doi.org/10.1007/s42864-022-00144-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang GC, Pan QY, Yang P, Liu YS, Du Y, Wang K. Heteropolyacids supported on hierarchically macro/mesoporous TiO2: efficient catalyst for deep oxidative desulfurization of fuel. Tungsten. 2022;4(1):28. https://doi.org/10.1007/s42864-021-00125-2.

  16. Deng Q, Shi L, Lu K, Wang G, Di T, Shen Y, Wang S. Construction of Ca-CuFeO2/TiO2(B) p–n heterojunctions with efficient visible light-driven photocatalysis. J Phys Chem C. 2023;127(9):4704. https://doi.org/10.1021/acs.jpcc.2c08064.

    Article  CAS  Google Scholar 

  17. Claudino CH, Kuznetsova M, Rodrigues BS, Chen C, Wang Z, Sardela M, Souza JS. Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity. Mater Res Bull. 2020;125: 110783. https://doi.org/10.1016/j.materresbull.2020.110783.

    Article  CAS  Google Scholar 

  18. Mohamed RM, Shawky A. Improved photocatalytic oxidation of ciprofloxacin by NiS-coupled WO3 nanorods synthesized by solvothermal method under visible light. Ceram Int. 2023;49(13):21855–63. https://doi.org/10.1016/j.ceramint.2023.04.008.

    Article  CAS  Google Scholar 

  19. Fragoso J, Barreca D, Bigiani L, Gasparotto A, Sada C, Lebedev OI, Modin E, Pavlovic I, Sánchez L, Maccato C. Enhanced photocatalytic removal of NOx gases by β-Fe2O3/CuO and β-Fe2O3/WO3 nanoheterostructures. Chem Eng J. 2022;430: 132757. https://doi.org/10.1016/j.cej.2021.132757.

    Article  CAS  Google Scholar 

  20. Alhogbi BG, Aslam M, Hameed A, Qamar MT. The efficacy of Co3O4 loaded WO3 sheets for the enhanced photocatalytic removal of 2,4,6-trichlorophenol in natural sunlight exposure. J Hazard Mater. 2020;397:1228. https://doi.org/10.1016/j.jhazmat.2020.122835.

    Article  CAS  Google Scholar 

  21. Chakraborty BR, Shivade K, Vaidyanathan A. Induction of stable, room-temperature ferromagnetism in WO3 by doping with K, Li, and Na: theoretical investigations. J Magn Magn Mater. 2023;565:170244. https://doi.org/10.1016/j.jmmm.2022.170244.

    Article  CAS  Google Scholar 

  22. Gu W, Wang W, Li G, Xie H, Wong PK, An T. Microwave-assisted synthesis of defective tungsten trioxide for photocatalytic bacterial inactivation: role of the oxygen vacancy. Chin J Catal. 2020;41(10):1488. https://doi.org/10.1016/s1872-2067(19)63409-1.

    Article  CAS  Google Scholar 

  23. Li X, Yu J, Jaroniec M. Hierarchical photocatalysts. Chem Soc Rev. 2016;45(9):2603. https://doi.org/10.1039/c5cs00838g.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Wang J, Zuo S, Pei J, Liu W, Wang J. Cooperative coupling of photocatalytic production of H2O2 and oxidation of organic pollutants over gadolinium ion doped WO3 nanocomposite. Chin Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.108157.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cabanes VD, Segalina A, Pastore M. Effects of size and morphology on the excited-state properties of nanoscale WO3 materials from first-principles calculations: implications for optoelectronic devices. ACS Appl Nano Mater. 2022;5(11):16289. https://doi.org/10.1021/acsanm.2c03331.

    Article  CAS  Google Scholar 

  26. Higashimoto S, Kurikawa Y, Tanabe Y, Fukushima T, Harada A, Murata M, Sakata Y, Kobayashi H. Photocatalytic property of WO3 modified with noble metal co-catalysts towards selective hydroxylation of benzene to phenol under visible light irradiation. Appl Catal B Environ. 2023;325:122289. https://doi.org/10.1016/j.apcatb.2022.122289.

    Article  CAS  Google Scholar 

  27. Shang Y, Cui Y, Shi R, Che Q, Zhang A, Yang P. Depositing Ag3PO4 on WO3 hollow microspheres at room temperature for rapid photocatalytic degradation of Rhodamine B. Prog Nat Sci Mater Int. 2022;32(3):282. https://doi.org/10.1016/j.pnsc.2022.03.006.

    Article  CAS  Google Scholar 

  28. Samuel O, Othman MHD, Kamaludin R, Sinsamphanh O, Abdullah H, Puteh MH, Kurniawan TA. WO3-based photocatalysts: a review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram Int. 2022;48(5):5845. https://doi.org/10.1016/j.ceramint.2021.11.158.

    Article  CAS  Google Scholar 

  29. Shandilya P, Sambyal S, Sharma R, Mandyal P, Fang B. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. J Hazard Mater. 2022;428:128218. https://doi.org/10.1016/j.jhazmat.2022.128218.

    Article  CAS  PubMed  Google Scholar 

  30. Yang H, Sun H, Li Q, Li P, Song K, Song B, Wang L. Structural, electronic, optical and lattice dynamic properties of the different WO3 phases: first-principle calculation. Vacuum. 2019;164:411. https://doi.org/10.1016/j.vacuum.2019.03.053.

    Article  CAS  Google Scholar 

  31. Thummavichai K, Wang N, Xu F, Rance G, Xia Y, Zhu Y. In situ investigations of the phase change behaviour of tungsten oxide nanostructures. R Soc Open Sci. 2018;5(4):171932. https://doi.org/10.1098/rsos.171932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vemuri RS, Bharathi KK, Gullapalli SK, Ramana CV. Effect of structure and size on the electrical properties of nanocrystalline WO3 films. ACS Appl Mater Interfaces. 2010;2(9):2623. https://doi.org/10.1021/am1004514.

    Article  CAS  PubMed  Google Scholar 

  33. Liu CB, Jin T, Qian JC, Xu XJ, Meng XR, Chen ZG. Synthesis and photocatalytic property of CuS-Ag/g-C3N4. Chin J Rare Met. 2023;47(8):1104. https://doi.org/10.13373/j.cnki.cjrm.XY21070028.

  34. Wei Y, Huang Y, Fang Y, Zhao Y, Luo D, Guo Q, Fan L, Wu J. Hollow mesoporous TiO2/WO3 sphere heterojunction with high visible-light-driven photocatalytic activity. Mater Res Bull. 2019;119:110571. https://doi.org/10.1016/j.materresbull.2019.110571.

    Article  CAS  Google Scholar 

  35. Cui L, Ding X, Wang Y, Shi H, Huang L, Zuo Y, Kang S. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl Surf Sci. 2017;391:202. https://doi.org/10.1016/j.apsusc.2016.07.055.

    Article  CAS  Google Scholar 

  36. Priyadharsan A, Vasanthakumar V, Shanavas S, Karthikeyan S, Anbarasan PM. Crumpled sheet like graphene based WO3-Fe2O3 nanocomposites for enhanced charge transfer and solar photocatalysts for environmental remediation. Appl Surf Sci. 2019;470:114. https://doi.org/10.1016/j.apsusc.2018.11.130.

    Article  CAS  Google Scholar 

  37. Song B, Wang T, Sun H, Shao Q, Zhao J, Song K, Hao L, Wang L, Guo Z. Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 2017;46(45):15769. https://doi.org/10.1039/c7dt03003g.

    Article  CAS  PubMed  Google Scholar 

  38. Mersal M, Mohamed GG, Zedan AF. Promoted visible-light-assisted oxidation of methanol over N-doped TiO2/WO3 nanostructures. Opt Mater. 2021;122:111810. https://doi.org/10.1016/j.optmat.2021.111810.

    Article  CAS  Google Scholar 

  39. Tran VA, Nguyen TP, Le VT, Kim IT, Lee SW, Nguyen CT. Excellent photocatalytic activity of ternary Ag@WO3@rGO nanocomposites under solar simulation irradiation. J Sci Adv Mater Dev. 2021;6(1):108. https://doi.org/10.1016/j.jsamd.2020.12.001.

    Article  CAS  Google Scholar 

  40. Harikumar B, Okla MK, Kokilavani S, Almunqedhi B, Alshuwaish R, Maksoud MAA, Tayeb MAE, Khan SS. Insights into oxygen defect enriched and non-metal dopant co modulated Fe3O4 nanospheres embedded WO3 nanorods for ameliorated photodegradation of doxycycline, Cr(VI) reduction and its genotoxicity. J Clean Prod. 2023;398:136549. https://doi.org/10.1016/j.jclepro.2023.136549.

    Article  CAS  Google Scholar 

  41. Das S, Srivastava VC. An overview of the synthesis of CuO–ZnO nanocomposite for environmental and other applications. Nanotechnol Rev. 2018;7(3):267. https://doi.org/10.1515/ntrev-2017-0144.

    Article  CAS  Google Scholar 

  42. Malefane ME, Feleni U, Kuvarega AT. A tetraphenylporphyrin/WO3/exfoliated graphite nanocomposite for the photocatalytic degradation of an acid dye under visible light irradiation. New J Chem. 2019;43(28):11348. https://doi.org/10.1039/c9nj02747e.

    Article  CAS  Google Scholar 

  43. Gao X, Li L, An M, Zheng T, Ma F. ZnO QDs and three-dimensional ordered macroporous structure synergistically enhance the photocatalytic degradation and hydrogen evolution performance of WO3/TiO2 composites. J Phys Chem Solids. 2022;165:110655. https://doi.org/10.1016/j.jpcs.2022.110655.

    Article  CAS  Google Scholar 

  44. Shin D, Lee DH, Lee CG, Park KS. Synergistic effects of fluorine and WO3 nanoparticles on the surface of TiO2 hollow spheres for enhanced photocatalytic activity under visible light irradiation. ACS Omega. 2021;6(46):30942. https://doi.org/10.1021/acsomega.1c03220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. González HAV, Gouder A, Laha S, Duppel V, Palacios SC, Solano AJ, Oshima T, Schützendübe P, Lotsch BV. Morphology matters: 0D/2D WO3 nanoparticle-ruthenium oxide nanosheet composites for enhanced photocatalytic oxygen evolution reaction rates. Adv Energy Mater. 2022;13(6):2203315. https://doi.org/10.1002/aenm.202203315.

    Article  CAS  Google Scholar 

  46. Palanisamy G, Bhuvaneswari K, Bharathi G, Nataraj D, Pazhanivel T. Enhanced photocatalytic properties of ZnS-WO3 nanosheet hybrid under visible light irradiation. ChemistrySelect. 2018;3(32):9422. https://doi.org/10.1002/slct.201801688.

    Article  CAS  Google Scholar 

  47. Han X, Yao B, Li K, Zhu W, Zhang X. Preparation and photocatalytic performances of WO3/TiO2 composite nanofibers. J Chem. 2020;2020:1. https://doi.org/10.1155/2020/2390486.

    Article  CAS  Google Scholar 

  48. Wei L, Zhang H, Cao J. Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity. Mater Lett. 2019;236:171. https://doi.org/10.1016/j.matlet.2018.10.088.

    Article  CAS  Google Scholar 

  49. Rong F, Wang Q, Lu Q, Yao L, Wei M. Rational fabrication of hierarchical Z-scheme WO3/Bi2WO6 nanotubes for superior photoelectrocatalytic reaction. ChemistrySelect. 2019;4(9):2676. https://doi.org/10.1002/slct.201803620.

    Article  CAS  Google Scholar 

  50. Isari AA, Mehregan M, Mehregan S, Hayati F, Kalantary RR, Kakavandi B. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: a novel hybrid system. J Hazard Mater. 2020;390:122050. https://doi.org/10.1016/j.jhazmat.2020.122050.

    Article  CAS  PubMed  Google Scholar 

  51. Garcia AC, Palomino GT, Reyes LH, Mar JLG, Tevino LM, Ramirez AH. Photocatalytic behaviour of WO3/TiO2-N for diclofenac degradation using simulated solar radiation as an activation source. Environ Sci Pollut Res Int. 2017;24(5):4613. https://doi.org/10.1007/s11356-016-8157-0.

    Article  CAS  Google Scholar 

  52. Sangchay W. WO3-Doped TiO2 coating on charcoal activated with increase photocatalytic and antibacterial properties synthesized by microwave-assisted sol-gel method. Journal of Nanotechnology 2017; 2017. https://doi.org/10.1155/2017/7902930.

  53. Zhou M, Tian X, Yu H, Wang Z, Ren C, Zhou L, Lin YW, Dou L. WO3/Ag2CO3 mixed photocatalyst with enhanced photocatalytic activity for organic dye degradation. ACS Omega. 2021;6(40):26439. https://doi.org/10.1021/acsomega.1c03694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Omrani N, Ejhieh AN. A novel quadripartite Cu2O-CdS-BiVO4-WO3 visible-light driven photocatalyst: brief characterization and study the kinetic of the photodegradation and mineralization of sulfasalazine. J Photochem Photobiol A Chem. 2020;400:112726. https://doi.org/10.1016/j.jphotochem.2020.112726.

    Article  CAS  Google Scholar 

  55. Singh J, Arora A, Basu S. Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light. J Alloys Compd. 2019;808:151734. https://doi.org/10.1016/j.jallcom.2019.151734.

    Article  CAS  Google Scholar 

  56. Dong YZ, Xue YS, Yang WW, You HM, Su Y. Visible light driven CdS/WO3 inverse opals with enhanced RhB degradation activity. Colloids Surf A Physicochem Eng Aspects. 2019;561:381. https://doi.org/10.1016/j.colsurfa.2018.10.033.

    Article  CAS  Google Scholar 

  57. Zhang S, Wang J, Chen S, Li R, Peng T. Construction of Ag2S/WO3 direct Z-scheme photocatalyst for enhanced charge separation efficiency and H2 generation activity. Ind Eng Chem Res. 2019;58(32):14802. https://doi.org/10.1021/acs.iecr.9b02335.

    Article  CAS  Google Scholar 

  58. Mao J, Li P, Wang J, Wang H, Zhang Q, Zhang L, Li H, Zhang W, Peng T. Insights into photocatalytic inactivation mechanism of the hypertoxic site in aflatoxin B1 over clew-like WO3 decorated with CdS nanoparticles. Appl Catal B Environ. 2019;248:477. https://doi.org/10.1016/j.apcatb.2019.01.057.

    Article  CAS  Google Scholar 

  59. Li H, Zhang Y, Zhang Q, Wang Y, Fan Y, Gao X, Niu J. Boosting visible-light photocatalytic degradation of indomethacin by an efficient and photostable Ag3PO4/NG/WO3 composites. Appl Surf Sci. 2019;490:481. https://doi.org/10.1016/j.apsusc.2019.06.072.

    Article  CAS  Google Scholar 

  60. Shi H, Yang S, Han C, Niu Z, Li H, Huang X, Ma J. Fabrication of Ag/Ag3PO4/WO3 ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation. Solid State Sci. 2019;96:105967. https://doi.org/10.1016/j.solidstatesciences.2019.105967.

    Article  CAS  Google Scholar 

  61. Li Q, Wang F, Hua Y, Luo Y, Liu X, Duan G, Yang X. Deposition-precipitation preparation of Ag/Ag3PO4/WO3 nanocomposites for efficient visible-light degradation of rhodamine B under strongly acidic/alkaline conditions. J Colloid Interface Sci. 2017;506:207. https://doi.org/10.1016/j.jcis.2017.07.018.

    Article  CAS  PubMed  Google Scholar 

  62. Jian J, Sun J. A review of recent progress on silicon carbide for photoelectrochemical water splitting. Solar RRL. 2020;4(7):2000111. https://doi.org/10.1002/solr.202000111.

    Article  CAS  Google Scholar 

  63. Fakhri H, Bagheri H. Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: synthesis, characterization and photodegradation of tetracycline and malathion. Mater Sci Semicond Proc. 2020;107:104815. https://doi.org/10.1016/j.mssp.2019.104815.

    Article  CAS  Google Scholar 

  64. Nawaz A, Goudarzi S, Zarrin H, Saravanan P. S-scheme/Type-1 heterostructure stimulated WO3/g-C3N4-WS2 ternary photocatalyst with improved charge transfer mechanism for full solar spectrum photocatalysis. J Alloys Compd. 2022;903:163951. https://doi.org/10.1016/j.jallcom.2022.163951.

    Article  CAS  Google Scholar 

  65. Wu W, Ma X, Li D, Xuan Y, Meng S, Chen M. Assembly of WO3 nanosheets/Bi24O31Br10 nanosheets composites with superior photocatalytic activity for degradation of tetracycline hydrochloride. J Mater Sci. 2018;53(23):15804. https://doi.org/10.1007/s10853-018-2747-9.

    Article  CAS  Google Scholar 

  66. Han W, Wu T, Wu Q. Fabrication of WO3/Bi2MoO6 heterostructures with efficient and highly selective photocatalytic degradation of tetracycline hydrochloride. J Colloid Interface Sci. 2021;602:544. https://doi.org/10.1016/j.jcis.2021.05.128.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao B, Shao N, Chen X, Ma J, Gao Y, Chen X. Construction of novel type II heterojunction WO3/Bi2WO6 and Z-scheme heterojunction CdS/Bi2WO6 photocatalysts with significantly enhanced photocatalytic activity for the degradation of rhodamine B and reduction of Cr(VI). Colloids Surf A Physicochem Eng Aspects. 2023;663:131072. https://doi.org/10.1016/j.colsurfa.2023.131072.

    Article  CAS  Google Scholar 

  68. Markhabayeva AA, Moniruddin M, Dupre R, Abdullin KA, Nuraje N. Designing of WO3@Co3O4 heterostructures to enhance photoelectrochemical performances. J Phys Chem A. 2020;124(3):486. https://doi.org/10.1021/acs.jpca.9b09173.

    Article  CAS  PubMed  Google Scholar 

  69. Wei P, Wen Y, Lin K, Li X. 2D/3D WO3/BiVO4 heterostructures for efficient photoelectrocatalytic water splitting. Int J Hydrog Energy. 2021;46(54):27506. https://doi.org/10.1016/j.ijhydene.2021.06.007.

    Article  CAS  Google Scholar 

  70. Ma H, Yang W, Gao S, Lin Z, Mo Z, Li C, Shang JK, Li Q. Photoirradiation-induced capacitance enhancement in the h-WO3/Bi2WO6 submicron rod heterostructure under simulated solar illumination and its postillumination capacitance enhancement retainment from a photocatalytic memory effect. ACS Appl Mater Interfaces. 2021;13(48):57214. https://doi.org/10.1021/acsami.1c17386.

    Article  CAS  PubMed  Google Scholar 

  71. Basumatary B, Basumatary R, Ramchiary A, Konwar D. Evaluation of Ag@TiO2/WO3 heterojunction photocatalyst for enhanced photocatalytic activity towards methylene blue degradation. Chemosphere. 2022;286:131848. https://doi.org/10.1016/j.chemosphere.2021.131848.

    Article  CAS  PubMed  Google Scholar 

  72. Singh P, Priya B, Shandilya P, Raizada P, Singh N, Pare B, Jonnalagadda SB. Photocatalytic mineralization of antibiotics using 60% WO3/BiOCl stacked to graphene sand composite and chitosan. Arab J Chem. 2019;12(8):4627. https://doi.org/10.1016/j.arabjc.2016.08.005.

    Article  CAS  Google Scholar 

  73. Lee JY, Jo WK. Heterojunction-based two-dimensional N-doped TiO2/WO3 composite architectures for photocatalytic treatment of hazardous organic vapor. J Hazard Mater. 2016;314:22. https://doi.org/10.1016/j.jhazmat.2016.04.012.

    Article  CAS  PubMed  Google Scholar 

  74. Keereeta Y, Thongtem S, Thongtem T. Enhanced photocatalytic degradation of methylene blue by WO3/ZnWO4 composites synthesized by a combination of microwave-solvothermal method and incipient wetness procedure. Powder Technol. 2015;284:85. https://doi.org/10.1016/j.powtec.2015.06.046.

    Article  CAS  Google Scholar 

  75. Ali H, Guler A, Masar M, Urbanek P, Urbanek M, Skoda D, Suly P, Machovsky M, Galusek D, Kuritka I. Solid-state synthesis of direct Z-scheme Cu2O/WO3 nanocomposites with enhanced visible-light photocatalytic performance. Catalysts. 2021;11(2):293. https://doi.org/10.3390/catal11020293.

    Article  CAS  Google Scholar 

  76. Wang W, Huang H, Ke X, Liu X, Yang S, Wang K, Huang L, Tu C, Zheng Z, Luo D, Zhang M. Morphology and size-dependent FAPbBr3/WO3 Z-scheme photocatalysts for the controllable photo-oxidation of benzyl alcohol. Mater Des. 2022;215: 110502. https://doi.org/10.1016/j.matdes.2022.110502.

    Article  CAS  Google Scholar 

  77. Zhang Y, Liu H, Peng J, Guo J, Wang B, Ding L, Cao X, Chang Y, Liu G. Synthesis of 2D/2D direct Z-scheme WO3/Bi5O7I heterojunctions for decomposition and detoxification of organic compounds under simulated sunlight. Appl Surf Sci. 2023;614:156050. https://doi.org/10.1016/j.apsusc.2022.156050.

    Article  CAS  Google Scholar 

  78. Liu N, Li R, Zhu J, Liu Q, Chen R, Yu J, Li Y, Zhang H, Wang J. Z-scheme heterojunction ZnS/WO3 composite: photocatalytic reduction of uranium and band gap regulation mechanism. J Colloid Interface Sci. 2023;630:727. https://doi.org/10.1016/j.jcis.2022.10.151.

    Article  CAS  PubMed  Google Scholar 

  79. Yao J, Zhang M, Yin H, Luo Y, Liu X. Improved photocatalytic activity of WO3/C3N4: by constructing an anchoring morphology with a Z-scheme band structure. Solid State Sci. 2019;95:105926. https://doi.org/10.1016/j.solidstatesciences.2019.06.015.

    Article  CAS  Google Scholar 

  80. Chen J, Xiao X, Wang Y, Ye Z. Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl Surf Sci. 2019;467:1000. https://doi.org/10.1016/j.apsusc.2018.10.236.

    Article  CAS  Google Scholar 

  81. Jia J, Jiang C, Zhang X, Li P, Xiong J, Zhang Z, Wu T, Wang Y. Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight. Appl Surf Sci. 2019;495: 143524. https://doi.org/10.1016/j.apsusc.2019.07.266.

    Article  CAS  Google Scholar 

  82. Zhao L, Liu Y, Xi X, Shen Y, Wang J, Liu Y, Nie Z. Bi/Bi2O3/WO3 composite: a bifunctional plasmonic heterostructure for detection and degradation pollutions in wastewater. J Environ Chem Eng. 2022;10(3): 107643. https://doi.org/10.1016/j.jece.2022.107643.

    Article  CAS  Google Scholar 

  83. Wang Y, Chen D, Hu Y, Qin L, Liang J, Sun X, Huang Y. An artificially constructed direct Z-scheme heterojunction: WO3 nanoparticle decorated ZnIn2S4 for efficient photocatalytic hydrogen production. Sustain Energy Fuels. 2020;4(4):1681. https://doi.org/10.1039/c9se01158g.

    Article  CAS  Google Scholar 

  84. Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2 production photocatalyst. Appl Catal B Environ. 2019;243:556. https://doi.org/10.1016/j.apcatb.2018.11.011.

    Article  CAS  Google Scholar 

  85. Liu C, Mao S, Wang H, Wu Y, Wang F, Xia M, Chen Q. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction. Chem Eng J. 2022;430: 132806. https://doi.org/10.1016/j.cej.2021.132806.

    Article  CAS  Google Scholar 

  86. Li Y, Shu S, Huang L, Liu J, Liu J, Yao J, Liu S, Zhu M, Huang L. Construction of a novel double S-scheme structure WO3/g-C3N4/BiOI: enhanced photocatalytic performance for antibacterial activity. J Colloid Interface Sci. 2023;633:60. https://doi.org/10.1016/j.jcis.2022.11.058.

    Article  CAS  PubMed  Google Scholar 

  87. Richter RK, Ming T, Caillol S. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sustain Energy Rev. 2013;19:82. https://doi.org/10.1016/j.rser.2012.10.026.

    Article  CAS  Google Scholar 

  88. Lin N, Lin Y, Qian X, Wang X, Su W. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light. ACS Sustain Chem Eng. 2021;9(40):13686. https://doi.org/10.1021/acssuschemeng.1c05356.

    Article  CAS  Google Scholar 

  89. Xie Z, Xu Y, Li D, Chen L, Meng S, Jiang D, Chen M. Construction of CuO quantum Dots/WO3 nanosheets 0D/2D Z-scheme heterojunction with enhanced photocatalytic CO2 reduction activity under visible-light. J Alloys Compd. 2021;858:157668. https://doi.org/10.1016/j.jallcom.2020.157668.

    Article  CAS  Google Scholar 

  90. Zhang M, Zhao K, Xiong J, Wei Y, Han C, Li W, Cheng GA. 1D/2D WO3 nanostructure coupled with a nanoparticulate CuO cocatalyst for enhancing solar-driven CO2 photoreduction: the impact of the crystal facet. Sustain Energy Fuels. 2020;4(5):2593. https://doi.org/10.1039/d0se00034e.

    Article  CAS  Google Scholar 

  91. Chen Q, Lan X, Chen K, Ren Q, Shi J. Construction of WO3/CsPbBr3 S-scheme heterojunction via electrostatic self-assembly for efficient and long-period photocatalytic CO2 reduction. J Colloid Interface Sci. 2022;616:253. https://doi.org/10.1016/j.jcis.2022.02.044.

    Article  CAS  PubMed  Google Scholar 

  92. Shi W, Guo X, Wang JC, Li Y, Liu L, Hou Y, Li Y, Lou H. Enhanced photocatalytic 3D/2D architecture for CO2 reduction over cuprous oxide octahedrons supported on hexagonal phase tungsten oxide nanoflakes. J Alloys Compd. 2020;830:154683. https://doi.org/10.1016/j.jallcom.2020.154683.

    Article  CAS  Google Scholar 

  93. Teh YW, Goh YW, Kong XY, Ng BJ, Yong ST, Chai SP. Fabrication of Bi2WO6/Cu/WO3 all-solid-state Z-scheme composite photocatalyst to improve CO2 photoreduction under visible light irradiation. ChemCatChem. 2019;11(24):6431. https://doi.org/10.1002/cctc.201901653.

    Article  CAS  Google Scholar 

  94. Sun Y, Han Y, Song X, Huang B, Ma X, Xing R. CdS/WO3 S-scheme heterojunction with improved photocatalytic CO2 reduction activity. J Photochem Photobiol B Biol. 2022;233: 112480. https://doi.org/10.1016/j.jphotobiol.2022.112480.

    Article  CAS  Google Scholar 

  95. Tang Z, Wang C, He W, Wei Y, Zhao Z, Liu J. The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chin Chem Lett. 2022;33(2):939. https://doi.org/10.1016/j.cclet.2021.07.020.

    Article  CAS  Google Scholar 

  96. Sierra JCM, Ramírez AH, Sandoval DAP, Ruiz ER, Hernández AM. Promoting multielectron CO2 reduction using a direct Z-scheme WO3/ZnS photocatalyst. J CO2 Util. 2022;63:102122. https://doi.org/10.1016/j.jcou.2022.102122.

  97. Dong YJ, Jiang Y, Liao JF, Chen HY, Kuang DB, Su CY. Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction. Sci China Mater. 2022;65(6):1550. https://doi.org/10.1007/s40843-021-1962-9.

    Article  CAS  Google Scholar 

  98. Das R, Sarkar S, Kumar R, Ramarao SD, Cherevotan A, Jasil M, Vinod CP, Singh AK, Peter SC. Noble-metal-free heterojunction photocatalyst for selective CO2 reduction to methane upon induced strain relaxation. ACS Catal. 2021;12(1):687. https://doi.org/10.1021/acscatal.1c04587.

    Article  CAS  Google Scholar 

  99. Zhao X, Yi X, Zhang J, Liu B, Yu S, Liu X. Z-scheme polyimide/tungsten trioxide aerogel photocatalyst for enhanced photocatalytic CO2 reduction under visible light. Nanotechnology. 2021;32(31):315714. https://doi.org/10.1088/1361-6528/abf7ed.

    Article  CAS  Google Scholar 

  100. Li B, Sun L, Bian J, Sun N, Sun J, Chen L, Li Z, Jing L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Appl Catal B Environ. 2020;270:118849. https://doi.org/10.1016/j.apcatb.2020.118849.

    Article  CAS  Google Scholar 

  101. Raza A, Shen H, Haidry AA, Sun L, Liu R, Cui S. Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. J CO2 Util. 2020;37:260. https://doi.org/10.1016/j.jcou.2019.12.020.

  102. Nguyen CTK, Tran NQ, Seo S, Hwang H, Oh S, Yu J, Lee J, Le TA, Hwang J, Kim M, Lee H. Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity. Mater Today. 2020;35:25. https://doi.org/10.1016/j.mattod.2019.11.005.

    Article  CAS  Google Scholar 

  103. Zhu Z, Huang WR, Chen CY, Wu RJ. Preparation of Pd–Au/TiO2–WO3 to enhance photoreduction of CO2 to CH4 and CO. J CO2 Util. 2018;28:247. https://doi.org/10.1016/j.jcou.2018.10.006.

    Article  CAS  Google Scholar 

  104. Wang JH, Yang SW, Ma FB, Zhao YK, Zhao SN. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst. Tungsten. 2024;6(1):114. https://doi.org/10.1007/s42864-023-00223-3.

  105. Li C, Wu ZW, Zhang QA. Synthesis and hydrogen desorption kinetics of Mg2FeH6-and Mg2CoH5-based composites with in situ formed YH3 and Mg2NiH4 nanoparticles. Rare Met. 2023;42(7):2335. https://doi.org/10.1007/s12598-018-1174-z.

    Article  CAS  Google Scholar 

  106. Yang H, Ding Z, Li YT, Li SY, Wu PK, Hou QH, Zheng Y, Gao B, Huo KF, Du WJ, Shaw LL. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023;42(9):2906. https://doi.org/10.1007/s12598-023-02306-z.

  107. Huang C, Zhang XL, Tang J, Li D, Ruan QD, Liu LL, Xiong FY, Wang B, Xu Y, Cui SH, Luo Y, Li QW, Chu PK. Spatially strain-induced and selective preparation of MoxN (x=1, 2) as a highly effective nanoarchitectonic catalyst for hydrogen evolution reaction in a wide pH range. Rare Met. 2023;42(5):1446. https://doi.org/10.1007/s12598-022-02227-3.

  108. Lu Y, Li Y, Wang Y, Zhang J. Two-photon induced NIR active core-shell structured WO3/CdS for enhanced solar light photocatalytic performance. Appl Catal B Environ. 2020;272:118979. https://doi.org/10.1016/j.apcatb.2020.118979.

    Article  CAS  Google Scholar 

  109. Wang D, Liu J, Zhang M, Song Y, Zhang Z, Wang J. Construction of ternary annular 2Z-scheme+1 heterojunction CuO/WO3/CdS photocatalytic system for methylene blue degradation with simultaneous hydrogen production. Appl Surf Sci. 2019;498:143843. https://doi.org/10.1016/j.apsusc.2019.143843.

    Article  CAS  Google Scholar 

  110. Qian Y, Yang M, Zhang F, Du J, Li K, Lin X, Zhu X, Lu Y, Wang W, Kang DJ. A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Mater Charact. 2018;142:43. https://doi.org/10.1016/j.matchar.2018.05.025.

    Article  CAS  Google Scholar 

  111. Tahir MB, Asiri AM, Nabi G, Rafique M, Sagir M. Fabrication of heterogeneous photocatalysts for insight role of carbon nanofibre in hierarchical WO3/MoSe2 composite for enhanced photocatalytic hydrogen generation. Ceram Int. 2019;45(5):5547. https://doi.org/10.1016/j.ceramint.2018.12.012.

    Article  CAS  Google Scholar 

  112. Oh WC, Na JD, Biswas MRD. CVD technique assisted, advanced synthesis of WO3-G composites for enhanced photocatalytic H2 generation under visible light illumination. Fuller Nanotube Carbon Nanostruct. 2019;27(10):762. https://doi.org/10.1080/1536383x.2019.1635587.

    Article  CAS  Google Scholar 

  113. Zhang M, Piao C, Wang D, Liu Z, Liu J, Zhang Z, Wang J, Song Y. Fixed Z-scheme TiO2|Ti|WO3 composite film as recyclable and reusable photocatalyst for highly effective hydrogen production. Opt Mater. 2020;99:109545. https://doi.org/10.1016/j.optmat.2019.109545.

    Article  CAS  Google Scholar 

  114. Ortega DR, Araque DG, Peña PA, Rojas LL, Zanella R. Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction. J Mater Sci. 2020;55(35):16641. https://doi.org/10.1007/s10853-020-05188-z.

    Article  CAS  Google Scholar 

  115. Zhou Y, Sun M, Yu T, Wang J. 3D g-C3N4/WO3/biochar/Cu2+-doped carbon spheres composites: synthesis and visible-light-driven photocatalytic hydrogen production. Mater Today Commun. 2022;30:103084. https://doi.org/10.1016/j.mtcomm.2021.103084.

    Article  CAS  Google Scholar 

  116. Wu K, Yao C, Wu P, Cao Y, Liu C, Zhu PJ, Yang D, Shi Z, Li B. Highly efficient hydrogen production performance of g-C3N4 quantum dot-sensitized WO3/Ni–ZnIn2S4 nanosheets. Appl Phys A. 2022;128(10):903. https://doi.org/10.1007/s00339-022-06055-1.

    Article  CAS  Google Scholar 

  117. Wu YL, Qi MY, Tan CL, Tang ZR, Xu YJ. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites. Chin J Catal. 2022;43(7):1851. https://doi.org/10.1016/s1872-2067(21)63989-x.

    Article  CAS  Google Scholar 

  118. Shen R, Zhang L, Li N, Lou Z, Ma T, Zhang P, Li Y, Li X. W-N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catal. 2022;12(16):9994. https://doi.org/10.1021/acscatal.2c02416.

    Article  CAS  Google Scholar 

  119. Li Z, Wang R, Wen M, Wang G, Xie G, Liu X, Jiang L. WO3/Cd0.5Zn0.5S heterojunction for highly efficient visible-light photocatalytic H2 evolution. J Phys ChemnSolids. 2023;178:111351. https://doi.org/10.1016/j.jpcs.2023.111351.

    Article  CAS  Google Scholar 

  120. Zhao M, Liu S, Chen D, Zhang S, Carabineiro SAC, Lv K. A novel S-scheme 3D ZnIn2S4/WO3 heterostructure for improved hydrogen production under visible light irradiation. Chin J Catal. 2022;43(10):2615. https://doi.org/10.1016/s1872-2067(22)64134-2.

    Article  CAS  Google Scholar 

  121. Mallikarjuna K, Kumar MK, Kim H. Synthesis of oxygen-doped-g-C3N4/WO3 porous structures for visible driven photocatalytic H2 production. Phys E Low Dimens Syst Nanostruct. 2021;126:114428. https://doi.org/10.1016/j.physe.2020.114428.

    Article  CAS  Google Scholar 

  122. He F, Meng A, Cheng B, Ho W, Yu J. Enhanced photocatalytic H2 production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal. 2020;41(1):9. https://doi.org/10.1016/s1872-2067(19)63382-6.

    Article  CAS  Google Scholar 

  123. Liu D, Zhang S, Wang J, Peng T, Li R. Direct Z-scheme 2D/2D photocatalyst based on ultrathin g-C3N4 and WO3 nanosheets for efficient visible-light-driven H2 generation. ACS Appl Mater Interfaces. 2019;11(31):27913. https://doi.org/10.1021/acsami.9b08329.

    Article  CAS  PubMed  Google Scholar 

  124. Tahir MB, Riaz KN, Asiri AM. Boosting the performance of visible light-driven WO3/g-C3N4 anchored with BiVO4 nanoparticles for photocatalytic hydrogen evolution. Int J Energy Res. 2019;43(11):5747. https://doi.org/10.1002/er.4673.

    Article  CAS  Google Scholar 

  125. Gong H, Hao X, Jin Z, Ma Q. WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production. New J Chem. 2019;43(48):19159. https://doi.org/10.1039/c9nj04584h.

    Article  CAS  Google Scholar 

  126. Han X, Xu D, An L, Hou C, Li Y, Zhang Q, Wang H. WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production. Int J Hydrog Energy. 2018;43(10):4845. https://doi.org/10.1016/j.ijhydene.2018.01.117.

    Article  CAS  Google Scholar 

  127. Zhang H, Tian W, Li Y, Sun H, Tadé MO, Wang S. Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J Mater Chem A. 2018;6(15):6265. https://doi.org/10.1039/c8ta00555a.

    Article  CAS  Google Scholar 

  128. He K, Shen R, Hao L, Li Y, Zhang P, Jiang J, Xin L. Advances in nanostructured silicon carbide photocatalysts. Acta Physico Chimica Sinica. 2022;38:2201021. https://doi.org/10.3866/pku.Whxb202201021.

    Article  Google Scholar 

  129. Qi P, Gao X, Wang J, Liu H, He D, Zhang Q. A minireview on catalysts for photocatalytic N2 fixation to synthesize ammonia. RSC Adv. 2022;12(3):1244. https://doi.org/10.1039/d1ra08002d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang K, Deng L, Huang M, Tu H, Kong Z, Liang Z, Shao Y, Hao X, Wu Y. Energy band matching WO3/B-doped g-C3N4 Z-scheme photocatalyst to fix nitrogen effectively. Colloids Surf A Physicochem Eng Aspects. 2022;633:127830. https://doi.org/10.1016/j.colsurfa.2021.127830.

    Article  CAS  Google Scholar 

  131. Guo H, Zhang H, Zhao J, Yuan P, Li Y, Zhang Y, Li L, Wang S, Song R. Two-dimensional WO3-transition-metal dichalcogenide vertical heterostructures for nitrogen fixation: a photo(electro) catalysis theoretical strategy. J Phys Chem C. 2022;126(6):3043. https://doi.org/10.1021/acs.jpcc.1c09772.

    Article  CAS  Google Scholar 

  132. Mendoza JA, Lee DH, Kang JH. Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: effect of surface modification. Chemosphere. 2017;182:539. https://doi.org/10.1016/j.chemosphere.2017.05.069.

    Article  CAS  PubMed  Google Scholar 

  133. Shi R, Zhang Z, Luo F. N-doped graphene-based CuO/WO3/Cu composite material with performances of catalytic decomposition 4-nitrophenol and photocatalytic degradation of organic dyes. Inorg Chem Commun. 2020;121: 108246. https://doi.org/10.1016/j.inoche.2020.108246.

    Article  CAS  Google Scholar 

  134. Zhu W, Liu J, Yu S, Zhou Y, Yan X. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater. 2016;318:407. https://doi.org/10.1016/j.jhazmat.2016.06.066.

    Article  CAS  PubMed  Google Scholar 

  135. Guo R, Han G, Yan A, He Y, Su N, Liu X, Yi T. Epitaxial growth of metastable phase α-Ag2MoO4 on WO3 surface: visible light-driven photocatalysis, sterilization, and reaction mechanism. J Alloys Compd. 2020;814:152255. https://doi.org/10.1016/j.jallcom.2019.152255.

    Article  CAS  Google Scholar 

  136. Zheng J, Chang F, Jiao M, Xu Q, Deng B, Hu X. A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: synthesis, characterization, and improved photocatalytic performance. J Colloid Interface Sci. 2018;510:20. https://doi.org/10.1016/j.jcis.2017.07.119.

    Article  CAS  PubMed  Google Scholar 

  137. Li JJ, Weng B, Cai SC, Chen J, Jia HP, Xu YJ. Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. J Hazard Mater. 2018;342:661. https://doi.org/10.1016/j.jhazmat.2017.08.077.

    Article  CAS  PubMed  Google Scholar 

  138. Govindaraj T, Mahendran C, Marnadu R, Shkir M, Manikandan VS. The remarkably enhanced visible-light-photocatalytic activity of hydrothermally synthesized WO3 nanorods: an effect of Gd doping. Ceram Int. 2021;47(3):4267. https://doi.org/10.1016/j.jhazmat.2017.08.077.

    Article  CAS  Google Scholar 

  139. Wang C, Luo S, Liu C, Chen C. WO3 quantum dots enhanced the photocatalytic performances of graphene oxide/TiO2 films under flowing dye solution. Inorg Chem Commun. 2020;115: 107875. https://doi.org/10.1016/j.inoche.2020.107875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22376051), the China Postdoctoral Science Foundation (Nos. 2021T140512 and 2020M680869) and the Natural Science Foundation of Hebei Province (No. B2021202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Qi Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, ZQ., Sun, YD. et al. A review on WO3-based composite photocatalysts: synthesis, catalytic mechanism and diversified applications. Rare Met. (2024). https://doi.org/10.1007/s12598-023-02554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-023-02554-z

Keywords

Navigation