Skip to main content

Advertisement

Log in

Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Co-catalysts are well known for improving the charge carrier’s separation and transfer to species in solution, and hence, the photocatalytic hydrogen production. Thus, in this work, the effect of loading Cu and Pd species over the WO3–TiO2 structure was evaluated. The structure of WO3–TiO2 was obtained by direct hydrolysis of titanium isopropoxide (sol–gel method) in previously synthesized WO3 nanoparticles (6 mol% of WO3), forming a composite that provided direct contact between WO3 and TiO2 nanoparticles. Subsequently, 0.5 wt% of copper or 0.5 wt% of palladium loadings was deposited onto WO3–TiO2. The photocatalytic hydrogen production results show that the activity increased with the presence of Cu and Pd species, reaching hydrogen production rates of 1496 μmol g−1 h−1 and 5427.07 μmol g−1 h−1 for Cu/WT and Pd/WT, respectively, as compared to WT structure (770.10 μmol g−1 h−1). To understand this behavior, semiconducting properties of the synthesized materials were characterized by (photo)electrochemical techniques. The presence of Cu and Pd in the structure moved the flatband position, increased the photocurrent and modified the open circuit potential under illumination toward less negative values, indicating the formation of energy states in the interface between WO3–TiO2 and the co-catalysts. These energy states at the heterojunction allow the transfer of photogenerated electrons toward co-catalysts, preventing the recombination of photogenerated charge carriers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1

Similar content being viewed by others

References

  1. Liu G, Kolodziej C, Jin R, Qi S, Lou Y, Chen J, Jiang D, Zhao Y, Burda C (2020) MoS2-Stratified CdS-Cu2–xS core–shell nanorods for highly efficient photocatalytic hydrogen production. ACS Nano 14:5468–5479. https://doi.org/10.1021/acsnano.9b09470

    Article  CAS  Google Scholar 

  2. Lu M, Shao C, Wang K, Lu N, Zhang X, Zhang P, Zhang M, Li X, Liu Y (2014) p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl Mater Interfaces 6(12):9004–9012. https://doi.org/10.1021/am5021155

    Article  CAS  Google Scholar 

  3. McCullagh C, Skillen N, Adams M, Robertson PKJ (2011) Photocatalytic reactors for environmental remediation: a review. J Chem Technol Biotechnol 86:1002–1017. https://doi.org/10.1002/jctb.2650

    Article  CAS  Google Scholar 

  4. Chan SHS, Wu TY, Juan JC, The CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86:1130–1158. https://doi.org/10.1002/jctb.2636

    Article  CAS  Google Scholar 

  5. Pan Hong J, Lee in W, (2006) Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem Mater 18:847–853. https://doi.org/10.1021/cm0522782

    Article  CAS  Google Scholar 

  6. Rey A, García-Muñoz P, Hernández-Alonso MD, Mena E, García-Rodríguez S, Beltrán FJ (2014) WO3–TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent. Appl Catal B Environ 154–155:274–284. https://doi.org/10.1016/j.apcatb.2014.02.035

    Article  CAS  Google Scholar 

  7. Toledo Camacho SY, Rey A, Hernández-Alonso MD, Llorca J, Medina F, Contreras S (2018) Pd/TiO2–WO3 photocatalysts for hydrogen generation from water-methanol mixtures. Appl Surf Sci 455:570–580. https://doi.org/10.1016/j.apsusc.2018.05.122

    Article  CAS  Google Scholar 

  8. DohĿeviĿ-MitroviĿ Z, StojadinoviĿ S, Lozzi L, AškrabiĿ S, RosiĿ M, TomiĿ N, PaunoviĿ N, LazoviĿ S, NikoliĿSantucci MGS (2016) WO3/TiO2 composite coatings: structural, optical and photocatalytic properties. Mater Res Bull 83:217–224. https://doi.org/10.1016/j.materresbull.2016.06.011

    Article  CAS  Google Scholar 

  9. Ramírez-Ortega D, Meléndez AM, Acevedo-Peña P, González I, Arroyo R (2014) Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim Acta 140:541–549. https://doi.org/10.1016/j.electacta.2014.06.060

    Article  CAS  Google Scholar 

  10. Ramírez-Ortega D, Acevedo-Peña P, Tzompantzi F, Arroyo R, González F, González I (2017) Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. J Mater Sci 52:260–275. https://doi.org/10.1007/s10853-016-0328-3

    Article  CAS  Google Scholar 

  11. Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, Lartundo-Rojas L, Gómez R (2017) SnO2–TiO2 structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. J Chem Technol Biotechnol 92:1531–1539. https://doi.org/10.1002/jctb.5273

    Article  CAS  Google Scholar 

  12. Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J Phys Chem C 114:22181–22189. https://doi.org/10.1021/jp107405u

    Article  CAS  Google Scholar 

  13. Li L, Xu L, Shi W, Guan J (2013) Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution. Int J Hydrog Energy 38:816–822. https://doi.org/10.1016/j.ijhydene.2012.10.064

    Article  CAS  Google Scholar 

  14. Lo SS, Mirkovic T, Chuang C-H, Burda C, Scholes GD (2011) Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv Mater 23:180–197. https://doi.org/10.1002/adma.201002290

    Article  CAS  Google Scholar 

  15. Wang Y, Zhang Y, Zhao G, Tian H, Shi H, Zhou T (2012) Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Appl Mater Interfaces 4:3965–3972. https://doi.org/10.1021/am300795w

    Article  CAS  Google Scholar 

  16. Ni D, Shen H, Li H, Ma Y, Zhai T (2017) Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Appl Surf Sci 409:241–249. https://doi.org/10.1016/j.apsusc.2017.03.046

    Article  CAS  Google Scholar 

  17. Chen W-T, Jovic V, Sun-Waterhouse D, Idriss H, Waterhouse GIN (2013) The role of CuO in promoting photocatalytic hydrogen production over TiO2. Int J Hydrog Energy 38:15036–15048. https://doi.org/10.1016/j.ijhydene.2013.09.101

    Article  CAS  Google Scholar 

  18. Wu J, Lu S, Ge D, Zhang L, Chen W, Gu H (2016) Photocatalytic properties of Pd/TiO2 nanosheets for hydrogen evolution from water splitting. RSC Adv 6:67502–67508. https://doi.org/10.1039/C6RA10408H

    Article  CAS  Google Scholar 

  19. Vuong NM, Kim D, Kim H (2013) Electrochromic properties of porous WO3–TiO2 core–shell nanowires. J Mater Chem C 1:3399–3407. https://doi.org/10.1039/C3TC30157E

    Article  CAS  Google Scholar 

  20. Patil SM, Deshmukh SP, More KB, Shevale VB, Mullani SB, Dhodamani AG, Delekar SD (2019) Sulfated TiO2/WO3 nanocomposite: an efficient photocatalyst for degradation of Congo red and methyl red dyes under visible light irradiation. Mater Chem Phys 225:247–255. https://doi.org/10.1016/j.matchemphys.2018.12.041

    Article  CAS  Google Scholar 

  21. Wei Y, Huang Y, Fang Y, Zhao Y, Luo D, Guo Q, Fan L, Wu J (2019) Hollow mesoporous TiO2/WO3 sphere heterojunction with high visible-light-driven photocatalytic activity. Mater Res Bull 119:110571–110578. https://doi.org/10.1016/j.materresbull.2019.110571

    Article  CAS  Google Scholar 

  22. Mathankumar G, Bharathi P, Mohan MK, Harish S, Navaneethan M, Archana J, Suresh P, Mani GK, Dhivya P, Ponnusamy S, Muthamizhchelvan C (2020) Synthesis and functional properties of nanostructured Gd-doped WO3/TiO2 composites for sensing applications. Mater Sci Semicond Process 105:104732–104740. https://doi.org/10.1016/j.mssp.2019.104732

    Article  CAS  Google Scholar 

  23. Prabhu S, Cindrella L, Kwon OJ, Mohanraju K (2019) Photoelectrochemical, photocatalytic and photochromic performance of rGO–TiO2–WO3 composites. Mater Chem Phys 224:217–228. https://doi.org/10.1016/j.matchemphys.2018.12.030

    Article  CAS  Google Scholar 

  24. Ke D, Li H, Peng T, Liu X, Ke D (2008) Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Mater Lett 62:447–450. https://doi.org/10.1016/j.matlet.2007.05.060

    Article  CAS  Google Scholar 

  25. Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U (2006) Structural stability and phase transitions in WO3 thin films. J Phys Chem B 110:10430–10435. https://doi.org/10.1021/jp056664i

    Article  CAS  Google Scholar 

  26. Mondal I, Pal U (2016) Synthesis of MOF templated Cu/CuO@TiO2 nanocomposites for synergistic hydrogen production. Phys Chem Chem Phys 18:4780–4788. https://doi.org/10.1039/C5CP06292F

    Article  CAS  Google Scholar 

  27. Zhen W, Jiao W, Wu Y, Jing H, Lu G (2017) The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu2O/Cu/TiO2 catalyst. Catal Sci Technol 7:5028–5037. https://doi.org/10.1039/C7CY01432E

    Article  CAS  Google Scholar 

  28. Yuan J, Zhang J-J, Yang M-P, Meng W-J, Wang H, Lu J-X (2018) CuO Nanoparticles supported on TiO2 with high efficiency for CO2 electrochemical reduction to ethanol. Catalysts 8:171–181. https://doi.org/10.3390/catal8040171

    Article  CAS  Google Scholar 

  29. Zhao Q, Li H, Zhang L, Cao Y (2019) Study of PdO species on surface of TiO2 for photoreduction of CO2 into CH4. J Photochem Photobiol A 384:112032–112039. https://doi.org/10.1016/j.jphotochem.2019.112032

    Article  CAS  Google Scholar 

  30. Dong X, Ma X, Xu H, Ge Q (2016) Comparative study of silicasupported copper catalysts prepared by different methods: formation and transition of copper phyllosilicate. Catal Sci Technol 6:4151–4158. https://doi.org/10.1039/C5CY01965F

    Article  CAS  Google Scholar 

  31. Rungjaroentawon N, Onsuratoom S, Chavadej S (2012) Hydrogen production from water splitting under visible light irradiation using sensitized mesoporous-assembled TiO2–SiO2 mixed oxide photocatalysts. Int J Hydrog Energy 37:11061–11071

    Article  CAS  Google Scholar 

  32. Rusinque B, Escobedo S, de Lasa H (2020) Photoreduction of a Pd-doped mesoporous TiO2 photocatalyst for hydrogen production under visible light. Catalysts 10:74–97. https://doi.org/10.3390/catal10010074

    Article  CAS  Google Scholar 

  33. López R, Gómez R, Llanos ME (2010) Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catal Today 148:103–108. https://doi.org/10.1016/j.cattod.2009.04.001

    Article  CAS  Google Scholar 

  34. Chen J, Lin L-B, Jing F-Q (2001) Theoretical study of F-type color center in rutile TiO2. J Phys Chem Solids 62:1257–1262. https://doi.org/10.1016/S0022-3697(01)00018-X

    Article  CAS  Google Scholar 

  35. Yu H, Irie H, Hashimoto K (2010) Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. J Am Chem Soc 132:6898–6899. https://doi.org/10.1021/ja101714s

    Article  CAS  Google Scholar 

  36. Wu Y, Lu G, Li S (2009) The role of Cu(I) species for photocatalytic hydrogen generation over CuOx/TiO2. Catal Lett 133:97–105. https://doi.org/10.1007/s10562-009-0165-y

    Article  CAS  Google Scholar 

  37. Mekasuwandumrong O, Chaitaworn S, Panpranot J, Praserthdam P (2019) Photocatalytic liquid-phase selective hydrogenation of 3-nitrostyrene to 3-vinylaniline of various treated-TiO2 without use of reducing gas. Catalysts 9:329–343. https://doi.org/10.3390/catal9040329

    Article  CAS  Google Scholar 

  38. Kumar Paul K, Jana S, Giri PK (2018) Tunable and high photoluminescence quantum yield from self-decorated TiO2 quantum dots on fluorine doped mesoporous TiO2 flowers by rapid thermal annealing. Part Part Syst Char 35:1800198–1800213. https://doi.org/10.1002/ppsc.201800198

    Article  CAS  Google Scholar 

  39. Zakrzewska K (2012) Nonstoichiometry in TiO2−y studied by ion beam methods and photoelectron spectroscopy. Adv Mater Sci Eng 826873:1–13. https://doi.org/10.1155/2012/826873

    Article  Google Scholar 

  40. Kato K, Xin Y, Shirai T (2019) Structural-controlled synthesis of highly efficient visible light TiO2 photocatalyst via one-step single-mode microwave assisted reaction. Sci Rep 9:4900–49008. https://doi.org/10.1038/s41598-019-41465-x

    Article  CAS  Google Scholar 

  41. Grandcolas M, Cottineau T, Louvet A, Keller N, Keller V (2013) Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl Catal B Environ 138–139:128–140. https://doi.org/10.1016/j.apcatb.2013.02.041

    Article  CAS  Google Scholar 

  42. Gao L, Gan W, Qiu Z, Zhan X, Qiang T, Li J (2017) Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities. Sci Rep 7:1102–1114. https://doi.org/10.1038/s41598-017-01244-y

    Article  CAS  Google Scholar 

  43. Chang F, Wang J, Luo J, Sun J, Deng B, Hu X (2016) Enhanced visible-light-driven photocatalytic performance of mesoporous W-Ti-SBA-15 prepared through a facile hydrothermal route. Colloid Surf A 499:69–78. https://doi.org/10.1016/j.colsurfa.2016.04.013

    Article  CAS  Google Scholar 

  44. Patrocinio AOT, Paula LF, Paniago RM, Freita J, Bahnemann DW (2014) Layer-by-layer TiO2/WO3 thin films as efficient photocatalytic self-cleaning surfaces. ACS Appl Mater Interfaces 6:16859–16866. https://doi.org/10.1021/am504269a

    Article  CAS  Google Scholar 

  45. Terohid SAA, Heidari S, Jafari A (2018) Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl Phys A 124:567–575. https://doi.org/10.1007/s00339-018-1955-0

    Article  CAS  Google Scholar 

  46. Alonso-Tellez A, Robert D, Keller V, Keller N (2014) H2S photocatalytic oxidation over WO3/TiO2 Hombikat UV100. Environ Sci Pollut Res 21:3503–3514. https://doi.org/10.1007/s11356-013-2329-y

    Article  CAS  Google Scholar 

  47. Gui Y, Blackwood DJ (2014) Electrochromic enhancement of WO3–TiO2 composite films produced by electrochemical anodization. J Electrochem Soc 161:E191–E201. https://doi.org/10.1149/2.0631414jes

    Article  CAS  Google Scholar 

  48. Reale F, Palczynski P, Amit I, Jones GF, Mehew JD, Bacon A, Ni N, Sherrell PC, Agnoli S, Craciun MF, Russo S, Mattev C (2017) High-mobility and high-optical quality atomically thin WS2. Sci Rep 7:14911–14920. https://doi.org/10.1038/s41598-017-14928-2

    Article  CAS  Google Scholar 

  49. Drouet C, Laberty C, Fierro JLG, Alphonse P, Rousset A (2000) X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel–copper spinel manganites. J Inorg Mater 2:419–426. https://doi.org/10.1016/S1466-6049(00)00047-7

    Article  CAS  Google Scholar 

  50. Monte M, Munuera G, Costa D, Conesa JC, Martínez-Arias A (2015) Near-ambient XPS characterization of interfacial copper species in ceria-supported copper catalysts. Phys Chem Chem Phys 17:29995–30004. https://doi.org/10.1039/C5CP04354A

    Article  CAS  Google Scholar 

  51. Mohammad A, Chandra P, Ghosh T, Carraro M, Mobin SM (2017) Facile access to amides from oxygenated or unsaturated organic compounds by metal oxide nanocatalysts derived from single-source molecular precursors. Inorg Chem 56:10596–10608. https://doi.org/10.1021/acs.inorgchem.7b01576

    Article  CAS  Google Scholar 

  52. Richharia P, Chopra KL, Bhatnagar MC (1991) Surface analysis of a black copper selective coating. Sol Energy Mater 23:93–109. https://doi.org/10.1016/0165-1633(91)90156-F

    Article  CAS  Google Scholar 

  53. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49:1325–1334. https://doi.org/10.1002/sia.6239

    Article  CAS  Google Scholar 

  54. Tressaud A, Khairoun S, Touhara H, Watanabe N (1986) X-ray photoelectron spectroscopy of palladium fluorides. Chemie 540–541:291–299. https://doi.org/10.1002/zaac.19865400932

    Article  Google Scholar 

  55. Priolkar KR, Bera P, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Formation of Ce1xPdxO2δ solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation. Chem Mater 14:2120–2128. https://doi.org/10.1021/cm0103895

    Article  CAS  Google Scholar 

  56. Cai G, Luo W, Xiao Y, Zheng Y, Zhong F, Zhan Y, Jiang L (2018) Synthesis of a highly stable Pd@CeO2 catalyst for methane combustion with the synergistic effect of urea and citric acid. ACS Omega 3:16769–16776. https://doi.org/10.1021/acsomega.8b02556

    Article  CAS  Google Scholar 

  57. Kibis LS, Titkov AI, Stadnichenko AI, Koscheev SV, Boronin AI (2009) X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl Surf Sci 255:9248–9254. https://doi.org/10.1016/j.apsusc.2009.07.011

    Article  CAS  Google Scholar 

  58. Moroseac M, Skála T, Veltruská K, Matolίn V, Matolίnová I (2004) XPS and SSIMS studies of Pd/SnOx system: reduction and oxidation in hydrogen containing air. Surf Sci 566–568:1118–1123. https://doi.org/10.1016/j.susc.2004.06.068

    Article  CAS  Google Scholar 

  59. Tan H-Z, Wang Z-Q, Xu Z-N, Sun J, Chen Z-N, Chen Q-S, Chen Y, Guo G-C (2017) Active Pd(ii) complexes: enhancing catalytic activity by ligand effect for carbonylation of methyl nitrite to dimethyl carbonate. Catal Sci Technol 7:3785–3790. https://doi.org/10.1039/C7CY01305A

    Article  CAS  Google Scholar 

  60. Veziroglu S, Hwang J, Drewes J, Barg I, Shondo J, Strunskus T, Polonskyi O, Faupel F, Aktas OC (2020) PdO nanoparticles decorated TiO2 film with enhanced photocatalytic and self-cleaning properties. Mater Today 16:100251. https://doi.org/10.1016/j.mtchem.2020.100251

    Article  CAS  Google Scholar 

  61. Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, Calderon HA, Gómez R (2017) Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2–TiO2 materials. Int J Hydrog Energy 42:9744–9753. https://doi.org/10.1016/j.ijhydene.2017.03.050

    Article  CAS  Google Scholar 

  62. Sreethawong T, Yoshikawa S (2005) Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal Commun 6:661–668. https://doi.org/10.1016/j.catcom.2005.06.004

    Article  CAS  Google Scholar 

  63. Xu C, Wang X, Zhu J (2008) Graphene−metal particle nanocomposites. J Phys Chem C 112:9841–19845. https://doi.org/10.1021/jp807989b

    Article  CAS  Google Scholar 

  64. Agrell J, Hasselbo K, Jansson K, Järåsa G, S, Boutonnet M, (2001) Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Appl Catal A Gen 211:239–250. https://doi.org/10.1016/S0926-860X(00)00876-0

    Article  CAS  Google Scholar 

  65. Agrell J, Germani G, Järås SG, Boutonnet M (2003) Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Appl Catal A Gen 242:233–245. https://doi.org/10.1016/S0926-860X(02)00517-3

    Article  CAS  Google Scholar 

  66. Barrios CE, Albiter E, Gracia y Jimenez J.M., Tiznado H, Romo-Herrera J, Zanella R, (2016) Photocatalytic hydrogen production over titania modified by gold–metal (palladium, nickel and cobalt) catalysts. Int J Hydrog Energy 41:23287–23300. https://doi.org/10.1016/j.ijhydene.2016.09.206

    Article  CAS  Google Scholar 

  67. Bahruji H, Bowker M, Davies PR, Morgan DJ, Morton CA, Egerton TA, Kennedy J, Jones W (2015) Rutile TiO2–Pd photocatalysts for hydrogen gas production from methanol reforming. Top Catal 58:70–76. https://doi.org/10.1007/s11244-014-0346-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support provided by Consejo Nacional de Ciencia y Tecnología (CONACYT) through the CB-18269 Grant and Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN103719 Grant. We also thank the Laboratorio Universitario de Caracterización Espectroscópica (LUCE-UNAM) and the Laboratorio Universitario de Nanotecnología Ambiental (LUNA-UNAM) and the technical support provided by Viridiana Maturano Rojas and Selene Islas Sánchez. David A. Ramírez Ortega (CVU 329398) thanks CONACYT postdoctoral Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Ramírez-Ortega or Rodolfo Zanella.

Ethics declarations

Conflict of interest

The authors declare that contents of this work have not conflict of interest with any individual or organization.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Ortega, D., Guerrero-Araque, D., Acevedo-Peña, P. et al. Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction. J Mater Sci 55, 16641–16658 (2020). https://doi.org/10.1007/s10853-020-05188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05188-z

Navigation