Skip to main content
Log in

Ternary alloy and metal oxides embedded in yolk–shell polyhedrons as bifunctional oxygen electrocatalyst

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To improve the efficiency of oxygen electrolysis, exploiting bifunctional electrocatalysts with excellent activity and stability is extremely important due to the four-electron transfer dynamics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, a series of yolk-shell hollow polyhedrons (YHPs) embedded with NiCoFe ternary alloy and metal oxides, which are named YHP-x (x = 1, 2, 3, 4), were reported. By controlled etching multi-layered zeolitic imidazolate frameworks and following pyrolytic integration, YHPs are endowed with mass transfer tunnels, accessible inner active sites, and good electrical conductivity. Due to the synergetic effect of the alloy, metal oxides and the yolk-shell structure, YHP-1 exhibits excellent ORR performance with a half-wave potential of 0.79 V and YHP-2 displays superior OER performance with a low overpotential of 257 mV at 10 mA cm−2. The strategy described in this work can be extended to a number of hollow/yolk-shell electrocatalysts for water splitting and metal–air batteries.

Graphical abstract

摘要

由于析氧反应(OER)和氧还原反应(ORR)的四电子转移动力学十分迟缓,为了提高氧电解效率,开发具有优异活性和稳定性的双功能电催化剂极为重要。在这里,我们报道了一系列嵌入NiCoFe三元合金和金属氧化物的核壳中空多面体(YHPs)。通过对多层ZIF的可控蚀刻和热解,YHP集成了一系列优势。例如,传质通道,可接近的内部活性位点和良好的导电性。由于合金,金属氧化物和蛋黄壳结构的协同作用,YHP-1表现出优异的ORR性能,半波电位为0.79 V,YHP-2表现出优异的OER性能,在10 mA·cm-2的电流密度下展现出257 mV的低过电位。这项工作中采用的合成策略可以推广到许多水分解和金属空气电池的中空/核壳电催化剂的制备。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang WX, Zhou JH, Wang S, Zhang WY, Wang ZC, Lv F, Wang K, Sun Q, Guo SJ. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energ Environ Sci. 2019;12(5):1605. https://doi.org/10.1039/C9EE00536F.

    Article  CAS  Google Scholar 

  2. Hou P, Li D, Yang NL, Wan JW, Zhang CH, Zhang X, Zhang XQ, Jiang HY, Zhang QH, Gu L, Wang D. Delicate control on the shell structure of hollow spheres enables tunable mas transport in water splitting. Angew Chem Int Ed. 2021;60(13): 6926. https://doi.org/10.1002/anie.202016285.

  3. Guo Y, Zhang LJ. Research progress in synthesis and electrochemical performance of cobalt sulfide as anode material for secondary batteries. Chin J Rare Met. 2022;46(2):227. https://doi.org/10.13373/j.cnki.cjrm.XY20050006.

    Article  Google Scholar 

  4. Liu LH, Li N, Han M, Han JR, Liang HY. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2022;41(1):125. https://doi.org/10.1007/s12598-021-01760-x.

  5. Lai JP, Huang BL, Chao YG, Chen X, Guo SJ. Strongly coupled nickel-cobalt nitrides/carbon hybrid nanocages with Pt-like activity for hydrogen evolution catalysis. Adv Mater. 2019;31(2):1805541. https://doi.org/10.1002/adma.201805541.

    Article  CAS  Google Scholar 

  6. Lin JM, Li N, Yang SP, Jia MJ, Liu J, Li XM, An L, Tian QW, Dong LZ, Lan YQ. Self-assembly of giant Mo240 hollow opening dodecahedra. J Am Chem Soc. 2020;142(32):13982. https://doi.org/10.1021/jacs.0c06582.

    Article  CAS  Google Scholar 

  7. Wang YZ, Ding YM, Zhang CH, Xue BW, Li NW, Yu L. Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Met. 2021;40(10):2785. https://doi.org/10.1007/s12598-021-01765-6.

    Article  CAS  Google Scholar 

  8. Cui H, Liao HX, Wang ZL, Xie JP, Tan PF, Chu DW, Jun P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022;41(8):2606. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  9. Lv XD, Li HT, Dai XG, Sun XN, Zhang HY, Zheng YZ,Tao X,Yang LH. Micron-scale ultrathin two-dimension zirconia nanosheets towards enhancing anticorrosion performance of epoxy coatings. Tungsten. 2021;3(4):459. https://doi.org/10.1007/s42864-021-00108-3.

  10. Zhu RM, Ding JW, Yang JP, Pang H, Xu Q, Zhang DL, Braunstein P. Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination. ACS Appl Mater Interfaces. 2020;12(22):25037. https://doi.org/10.1021/acsami.0c05450.

    Article  CAS  Google Scholar 

  11. Ren LB, Hua W, Hou ZD, Wang JG. Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage. Rare Met. 2022;41(6):1859. https://doi.org/10.1007/s12598-021-01930-x.

    Article  CAS  Google Scholar 

  12. Shi YK, Wang W, Liu YJ, Liu JJ, Wang L, Guo Y. Catalytic combustion performance of Co3O4 drived from metal-organic framework. Chin J Rare Met. 2021;45(8):952. https://doi.org/10.13373/j.cnki.cjrm.xy19050013.

  13. Li QY, Zhang L, Xu YX, Li Q, Xue HG, Pang H. Smart yolk/shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. ACS Sustain Chem Eng. 2019;7(5):5027. https://doi.org/10.1021/acssuschemeng.8b05744.

    Article  CAS  Google Scholar 

  14. Hou SY, Lian Y, Bai YQ, Zhou QP, Ban CL, Wang ZF, Zhao J, Zhang HH. Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochim Acta. 2020;341: 136053. https://doi.org/10.1016/j.electacta.2020.136053.

    Article  CAS  Google Scholar 

  15. Liu CL, Bai Y, Li WT, Yang FY, Zhang GX, Pang H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Ed. 2022;61(11): e202116282. https://doi.org/10.1002/anie.202116282.

    Article  CAS  Google Scholar 

  16. Song XK, Jiang Y, Cheng F, Earnshaw J, Na J, Li XP, Yamauchi Y. Hollow carbon-based nanoarchitectures based on ZIF: inward/outwa contraction mechanism and beyond. Small. 2021;17(2):2004142. https://doi.org/10.1002/smll.202004142.

    Article  CAS  Google Scholar 

  17. Kaneti YV, Dutta S, Hossain MSA, Shiddiky MJA, Tung K, Shieh F, Tsung CK, Wu KCW, Yamauchi Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater. 2017;29(38):1700213. https://doi.org/10.1002/adma.201700213.

    Article  CAS  Google Scholar 

  18. Cao S, Chen TT, Zheng SS, Bai Y, Pang H. High-performance capacitive deionization and killing sicroorganism in surface-water by ZIF-9 derived carbon composites. Small Methods. 2021;5(12):2101070. https://doi.org/10.1002/smtd.202101070.

    Article  CAS  Google Scholar 

  19. Yuan X, Qu SL, Huang XY, Xue XG, Yuan CL, Wang SW, Wei L, Cai P. Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem Eng J. 2021;416: 129148. https://doi.org/10.1016/j.cej.2021.129148.

    Article  CAS  Google Scholar 

  20. Tang J, Zheng SB, Jiang SX, Li J, Guo T, Guo JH. Metal organic framework (ZIF-67)-derived Co nanoparticles/N-doped carbon nanotubes composites for electrochemical detecting of tert-butyl hydroquinone. Rare Met. 2021;40(2):478. https://doi.org/10.1007/s12598-020-01536-9.

    Article  CAS  Google Scholar 

  21. Hu M, Hu X, Zhang Y, Teng M, Deng R, Xing G, Tao J, Xu G, Chen J, Zhang Y, Zhang G. Label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@ graphene composites for sensitive detection of monensin in milk. Sensors Actuators B: Chem. 2019;1(288):571. https://doi.org/10.1016/j.snb.2019.03.014.

    Article  CAS  Google Scholar 

  22. Zang Y, Luo H, Zhang H, Xue HG. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors. ACS Appl Energy Mater. 2021;4(2):1189. https://doi.org/10.1021/acsaem.0c02465.

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhu M, Xu S, Zhou HH, Qi HC, Wang HG. Zeolitic imidazolate framework derived cobalt oxide anchored bacterial cellulose: a good template with improved H2O adsorption ability and its enhanced hydrogen evolution performance. Electrochim Acta. 2020;353: 136499. https://doi.org/10.1016/j.electacta.2020.136499.

    Article  CAS  Google Scholar 

  24. Cai GR, Ding ML, Wu QY, Jiang HL. Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl Sci Rev. 2020;7:37. https://doi.org/10.1093/nsr/nwz147.

    Article  CAS  Google Scholar 

  25. Yang T, Mao XN, Zhang Y, Wu XP, Wang L, Chu MY, Pao CW, Yang SZ, Xu Y, Huang XQ. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat Commun. 2021;12(1):6022. https://doi.org/10.1038/s41467-021-26316-6.

    Article  CAS  Google Scholar 

  26. Yu FC, Li YM, Liu ZY, Cui JP, Zhou YD. Synthesis and photocatalytic properties of Na doped g-C3N4 nanotubes. Chin J Rare Met. 2022;46(7):889. https://doi.org/10.13373/j.cnki.cjrm.XY21040038.

  27. Zhou L, Zhou P, Zhang YL, Liu BY, Gao P, Guo SJ. 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. J Energy Chem. 2021;55:355. https://doi.org/10.1016/j.jechem.2020.06.059.

    Article  CAS  Google Scholar 

  28. Wu YL, Li XF, Wei YS, Fu ZM, Wei WT, Wu XT, Zhu QL. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv Mater. 2021;33(12):2006965. https://doi.org/10.1002/adma.202006965.

    Article  CAS  Google Scholar 

  29. Li JG, Sun HC, Lv L, Li ZS, Ao X, Xu CH, Li Y, Wang CD. Metal–organic framework-derived hierarchical (Co, Ni)Se2@NiFe LDH hollow nanocages for enhanced oxygen evolution. ACS Appl Mater Interfaces. 2019;11(8):8106. https://doi.org/10.1021/acsami.8b22133.

    Article  CAS  Google Scholar 

  30. Liu WJ, Yuan M, Lian JB, Li GC, Li QP, Qiao F, Zhao Y. Embedding partial sulfurization of iron–cobalt oxide nanoparticles into carbon nanofibers as an efficient electrode for the advanced asymmetric supercapacitor. Tungsten. 2023;5(1):118. https://doi.org/10.1007/s42864-022-00157-2.

  31. Liu YS, Chen ZC, Li ZX, Zhao N, Xie YL, Du Y, Xuan JN, Xiong DB, Zhou JQ, Cai L, Yang YH. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy. 2022;99: 107325. https://doi.org/10.1016/j.nanoen.2022.107325.

    Article  CAS  Google Scholar 

  32. Zhu RM, Ding JW, Xu YX, Yang JP, Xu Q, Pang H. π-conjugated molecule boosts metal–organic frameworks as efficient oxygen evolution reaction catalysts. Small. 2018;14(50):1803576. https://doi.org/10.1002/smll.201803576.

    Article  CAS  Google Scholar 

  33. Zhu RM, Zhang Y, Ding JW, Pang H. Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Sci China Mater. 2021;64(6):1556. https://doi.org/10.1007/s40843-020-1587-3.

    Article  CAS  Google Scholar 

  34. Chen HR, Shen K, Tan YP, Li YW. Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties. ACS Nano. 2019;13(7):7800. https://doi.org/10.1021/acsnano.9b01953.

    Article  CAS  Google Scholar 

  35. Ye SH, Shi ZX, Feng JX, Tong YX, Li GR. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew Chem Int Ed. 2018;57(10):2672. https://doi.org/10.1002/anie.201712549.

    Article  CAS  Google Scholar 

  36. Antony RP, Satpati AK, Bhattacharyya K, Jagatap BN. MOF derived nonstoichiometric NixCo3−xO4−y Nanocage for superior electrocatalytic oxygen evolution. Adv Mater Interfaces. 2016;3(20):1600632. https://doi.org/10.1002/admi.201600632.

    Article  CAS  Google Scholar 

  37. Kang JL, Hirata A, Chen LY, Zhu SL, Fujita T, Chen MW. Extraordinary supercapacitor performance of a multicomponent and mixed-valence oxyhydroxide. Angew Chem Int Ed. 2015;54(28):8100. https://doi.org/10.1002/anie.201500133.

    Article  CAS  Google Scholar 

  38. Doyle RL, Lyons MEG. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys Chem Chem Phys. 2013;15(14):5224. https://doi.org/10.1039/C3CP43464H.

    Article  CAS  Google Scholar 

  39. Da B, Yu HF, Ma HY, Wu ZY. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete. J Chinese Soc Corros Prot. 2019;39(3):260. https://doi.org/10.11902/1005.4537.2018.108.

    Article  Google Scholar 

  40. Wang YQ, Chen S, Zhang JT. Hierarchical assembly of prussian blue derivatives for superior oxygen evolution reaction. Adv Funct Mater. 2019;29(45):1904955. https://doi.org/10.1002/adfm.201904955.

    Article  CAS  Google Scholar 

  41. Zhang SL, Guan BY, Lou XW. Co–Fe alloy/N-doped carbon hollow spheres derived from dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction. Small. 2019;15(13):1805324. https://doi.org/10.1002/smll.201805324.

    Article  CAS  Google Scholar 

  42. Lu XF, Yu L, Zhang J, Lou XW. Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv Mater. 2019;31(30):1900699. https://doi.org/10.1002/adma.201900699.

    Article  CAS  Google Scholar 

  43. Zhao SL, Yang YC, Tang ZY. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew Chem Int Ed. 2022;61(11): e202110186. https://doi.org/10.1002/anie.202110186.

    Article  CAS  Google Scholar 

  44. Wang SH, Yin YX, Zuo TT, Dong W, Li JY, Shi JL, Zhang CH, Li NW, Li CJ, Guo YG. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv Mater. 2017;29(40):1703729. https://doi.org/10.1002/adma.201703729.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Program for the National Natural Science Foundation of China (Nos. NSFC- 21901221, 21671170, 21673203 and U1904215), the Natural Science Foundation of Jiangsu Province (No. BK20190870), Changjiang Scholars Program of the Ministry of Education (No. Q2018270) and the Top Talent Project of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Mei Zhu or Huan Pang.

Ethics declarations

Conflict of interests

Huan Pang is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12242 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, JD., Zhang, GX. et al. Ternary alloy and metal oxides embedded in yolk–shell polyhedrons as bifunctional oxygen electrocatalyst. Rare Met. 43, 478–488 (2024). https://doi.org/10.1007/s12598-023-02485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02485-9

Keywords

Navigation