Skip to main content
Log in

Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution

热引发纳米复合物提高催化析氧反应效率

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

电解水能够为我们提供清洁可持续的能源, 这对生态环境系 统大有裨益. 因此, 在电解水体系中, 开发新型有效的析氧催化剂迫 在眉睫. 本文首先通过自下而上的方法合成Au@ZIF-67, 再对其进 行控温处理得到纳米复合物Au@ZIF-67-500. 通过扫描电子显微 镜、透射电子显微镜、X射线光电子能谱和紫外光谱等一系列测 试手段揭示了材料的纳米结构形貌及其表面电子分布. 在 1.0 mol L−1 KOH电解液中, 利用三电极体系进行了电催化性能的 测试. 结果显示, 该纳米复合物在催化析氧反应过程中呈现出良好 的催化活性和较好的稳定性. 这一结果可以归功于三方面的协同 作用: 金纳米粒子的包覆、多孔结构和有效的热控制. 这种通过简 单方法制备的析氧催化剂对能量转换领域具有一定的借鉴意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yassine O, Shekhah O, Assen AH, et al. H2S sensors: Fumarate-based fcu-MOF thin film grown on a capacitive interdigitated electrode. Angew Chem Int Ed, 2016, 55: 15879–15883

    Article  Google Scholar 

  2. Li J, Yuan S, Qin JS, et al. Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection. Angew Chem Int Ed, 2020, 59: 9319–9323

    Article  Google Scholar 

  3. Du M, Li Q, Zhao Y, et al. A review of electrochemical energy storage behaviors based on pristine metal-organic frameworks and their composites. Coord Chem Rev, 2020, 416: 213341

    Article  Google Scholar 

  4. Jiang K, Zhang L, Xia T, et al. A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Sci China Mater, 2019, 62: 1315–1322

    Article  Google Scholar 

  5. Masoomi MY, Morsali A, Dhakshinamoorthy A, et al. Mixed-metal MOFs: Unique opportunities in metal-organic framework (MOF) functionality and design. Angew Chem Int Ed, 2019, 58: 15188–15205

    Article  Google Scholar 

  6. Ding M, Flaig RW, Jiang HL, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev, 2019, 48: 2783–2828

    Article  Google Scholar 

  7. Zhu R, Ding J, Jin L, et al. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev, 2019, 389: 119–140

    Article  Google Scholar 

  8. Wang Y, Li Y, Wang Z, et al. Reticular chemistry in electrochemical carbon dioxide reduction. Sci China Mater, 2020, 63: 1113–1141

    Article  Google Scholar 

  9. Li D, Xu HQ, Jiao L, et al. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1: 100005

    Article  Google Scholar 

  10. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev, 2020, 120: 1438–1511

    Article  Google Scholar 

  11. Cheng Y, Xiao X, Guo X, et al. Synthesis of “quasi-Ce-MOF” electrocatalysts for enhanced urea oxidation reaction performance. ACS Sustain Chem Eng, 2020, 8: 8675–8680

    Article  Google Scholar 

  12. Chen YZ, Wang C, Wu ZY, et al. From bimetallic metal-organic framework to porous carbon: High surface area and multi-component active dopants for excellent electrocatalysis. Adv Mater, 2015, 27: 5010–5016

    Article  Google Scholar 

  13. Wang Y, Zhao M, Ping J, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater, 2016, 28: 4149–4155

    Article  Google Scholar 

  14. Ma T, Zhou F, Zhang TW, et al. Large-scale syntheses of zinc sulfide·(diethylenetriamine)0.5 hybrids as precursors for sulfur nanocomposite cathodes. Angew Chem Int Ed, 2017, 56: 11836–11840

    Article  Google Scholar 

  15. Xie LS, Sun L, Wan R, et al. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal-organic framework J Am Chem Soc, 2018, 140: 7411–7414

    Article  Google Scholar 

  16. Xue Z, Li Y, Zhang Y, et al. Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution Adv Energy Mater, 2018, 8: 1801564

    Article  Google Scholar 

  17. Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electro-chemically-deposited PANI. J Am Chem Soc, 2015, 137: 4920–4923

    Article  Google Scholar 

  18. Goswami S, Ray D, Otake KI, et al. A porous, electrically conductive hexa-zirconium(IV) metal-organic framework. Chem Sci, 2018, 9: 4477–4482

    Article  Google Scholar 

  19. Dang S, Zhu QL, Xu Q. Nanomaterials derived from metal-organic frameworks. Nat Rev Mater, 2018, 3: 17075

    Article  Google Scholar 

  20. Guan BY, Lu Y, Wang Y, et al. Porous iron-cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal-organic framework hybrids for oxygen reduction. Adv Funct Mater, 2018, 28: 1706738

    Article  Google Scholar 

  21. Yi JD, Liu TT, Huang YB, et al. Solid-state synthesis of MoS2 nanorod from molybdenum-organic framework for efficient hydrogen evolution reaction. Sci China Mater, 2019, 62: 965–972

    Article  Google Scholar 

  22. Li X, Liu S, Fan K, et al. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv Energy Mater, 2018, 8: 1800101

    Article  Google Scholar 

  23. Liu T, Li P, Yao N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv Mater, 2019, 31: 1806672

    Article  Google Scholar 

  24. Sun T, Xu L, Wang D, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res, 2019, 12: 2067–2080

    Article  Google Scholar 

  25. Han X, Ling X, Wang Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew Chem Int Ed, 2019, 58: 5359–5364

    Article  Google Scholar 

  26. Zhou W, Huang DD, Wu YP, et al. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed, 2019, 58: 4227–4231

    Article  Google Scholar 

  27. Liu X, Guo R, Ni K, et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv Mater, 2020, 32: 2001136

    Article  Google Scholar 

  28. Li J, Ren Y, Ji F, et al. Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chem Eng J, 2017, 324: 63–73

    Article  Google Scholar 

  29. van Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal, 2019, 2: 955–970

    Article  Google Scholar 

  30. Gu X, Lu ZH, Jiang HL, et al. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc, 2011, 133: 11822–11825

    Article  Google Scholar 

  31. Tran L, Kim HN, Li N, et al. Shaping nanoparticle fingerprints at the interface of cholesteric droplets. Sci Adv, 2018, 4: eaat8597

    Article  Google Scholar 

  32. Gu Z, Chen L, Duan B, et al. Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chem Commun, 2016, 52: 116–119

    Article  Google Scholar 

  33. Chen YZ, Zhou YX, Wang H, et al. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: Combination of host-guest cooperation and bimetallic synergy in catalysis. ACS Catal, 2015, 5: 2062–2069

    Article  Google Scholar 

  34. Li G, Zhao S, Zhang Y, et al. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv Mater, 2018, 30: 1800702

    Article  Google Scholar 

  35. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191

    Article  Google Scholar 

  36. Lu G, Hupp JT. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases. J Am Chem Soc, 2010, 132: 7832–7833

    Article  Google Scholar 

  37. Zhou H, Zheng M, Tang H, et al. Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small, 2020, 16: 1904252

    Article  Google Scholar 

  38. Kuo CH, Tang Y, Chou LY, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc, 2012, 134: 14345–14348

    Article  Google Scholar 

  39. Chen J, Huang L, Wang Q, et al. Bio-inspired nanozyme: A hydratase mimic in a zeolitic imidazolate framework. Nanoscale, 2019, 11: 5960–5966

    Article  Google Scholar 

  40. Li W, Zhao R, Zhou K, et al. Cage-structured MxPy@CNCs (M = Co and Zn) from MOF confined growth in carbon nanocages for superior lithium storage and hydrogen evolution performance. J Mater Chem A, 2019, 7: 8443–8450

    Article  Google Scholar 

  41. Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 2019, 3: 1289–1300

    Article  Google Scholar 

  42. Zhang H, Hwang S, Wang M, et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J Am Chem Soc, 2017, 139: 14143–14149

    Article  Google Scholar 

  43. Zuo Z, Li Y. Emerging electrochemical energy applications of graphdiyne. Joule, 2019, 3: 899–903

    Article  Google Scholar 

  44. Qu F, Jiang H, Yang M. Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nano-cages with enhanced gas sensing properties. Nanoscale, 2016, 8: 16349–16356

    Article  Google Scholar 

  45. Yang Q, Xu Q, Jiang HL. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem Soc Rev, 2017, 46: 4774–4808

    Article  Google Scholar 

  46. Lu G, Li S, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem, 2012, 4: 310–316

    Article  Google Scholar 

  47. Zhu R, Ding J, Yang J, et al. Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination. ACS Appl Mater Interfaces, 2020, 12: 25037–25041

    Article  Google Scholar 

  48. Yang Y, Wang SQ, Wen H, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew Chem Int Ed, 2019, 58: 15362–15366

    Article  Google Scholar 

  49. Leus K, Concepcion P, Vandichel M, et al. Au@UiO-66: A base free oxidation catalyst. RSC Adv, 2015, 5: 22334–22342

    Article  Google Scholar 

  50. Cheng J, Liu N, Hu L, et al. Polyethyleneimine entwine thermally-treated Zn/Co zeolitic imidazolate frameworks to enhance CO2 adsorption. Chem Eng J, 2019, 364: 530–540

    Article  Google Scholar 

  51. Jiang J, Zhang A, Li L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources, 2015, 278: 445–451

    Article  Google Scholar 

  52. Liang H, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15: 1421–1427

    Article  Google Scholar 

  53. He K, Cao Z, Liu R, et al. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res, 2016, 9: 1856–1865

    Article  Google Scholar 

  54. Meng Y, Song W, Huang H, et al. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc, 2014, 136: 11452–11464

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 21901221 and 21671170), the Natural Science Foundation of Jiangsu Province (BK20190870), Changjiang Scholars Program of the Ministry of Education (Q2018270), Lvyangjinfeng Talent Program of Yangzhou and Six Talent Peaks Project of Jiangsu Province. The authors acknowledge the technical support from the Testing Centre of Yangzhou University and State Key Laboratory of Coordination Chemistry of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

Zhu R conceived the experiments and wrote the paper; Zhang Y collected and analyzed the data; Ding J synthesized the materials and performed the measurements; Pang H supervised the project and contributed the funding. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Rongmei Zhu  (朱荣妹) or Huan Pang  (庞欢).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Rongmei Zhu received her PhD degree in inorganic chemistry from Georg-August-University Göttingen (2017). Currently, she is an associate professor at Yangzhou University. Her research interests focus on self-assembled coordination cages in supramolecular chemistry and multifunctional materials based on nanostructures.

Huan Pang received his PhD degree from Nanjing University (2011). He is now a university distinguished professor at Yangzhou University. In the past 10 years, his group has been engaged in the design and syntheses of functional nanomaterials, especially MOF-based materials. His research interests include the development of inorganic nanostructures and their applications in nanoelectrochemistry with a focus on energy devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Zhang, Y., Ding, J. et al. Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Sci. China Mater. 64, 1556–1562 (2021). https://doi.org/10.1007/s40843-020-1587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1587-3

Navigation