Skip to main content
Log in

Synthesis methods and applications of high entropy nanoparticles

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) are an important research direction in the materials science field and engineering field. Different from traditional alloys which usually contain only one basic element and infrequently two, HEAs are made up of many major elements in much larger numbers. With impressive mechanical properties, impressive corrosion resistance and superior thermal stability, HEAs offer overwhelming advantages over conventional alloys. HEAs have received a lot of attention due to its unique concept and performance. In recent years, many researchers have prepared HEAs at the nanometer level, and the obtained high-entropy nanoparticles (HEA-NPs) have been extensively used in multifarious fields. This paper reviews the main characteristics, core effects, conventional synthesis methods and their applications in various fields of HEA-NPs. Furthermore, the vast space to be explored is discussed and the future development direction and outlook are outlined productively.

Graphical abstract

摘要

高熵合金(HEAs)是材料科学和工程领域的一个重要研究方向。传统合金通常只含有一种基本元素,很少含有两种,不同于传统合金,HEAs由大量的主要元素组成。HEAs具有令人印象深刻的机械性能,令人印象深刻的耐腐蚀性和优越的热稳定性,与传统合金相比具有压倒性的优势。HEAs以其独特的概念和性能受到了广泛的关注。近年来,许多研究者在纳米水平上制备了HEAs,得到的高熵纳米粒子(HEA-NPs)已广泛应用于各个领域。本文综述了HEA-NPs的主要特点、核心效应、常规合成方法及其在各个领域的应用。探讨了有待探索的广阔空间,并对未来的发展方向和前景进行了富有成效的展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Reproduced with permission from Ref. [39]. Copyright 2013, Elsevier. b Schematic representation of proposed differences in lattice potential energy distributions along atomic diffusion paths in pure elements or dilute solid solutions (top) and HEA lattices (bottom). Reproduced with permission from Ref. [4]. Copyright 2016, Taylor & Francis Group. c Schematic representation of strain lattice in HEA. Reproduced with permission from Ref. [40]. Copyright 2013, Springer. d EBSD phase maps after heat-treatment of NbTaTiV and NbTaTiVZr and 1D concentration depth profiles of homogenized both HEAs components. Reproduced with permission from Ref. [43]. Copyright 2020, Wiley–VCH

Scheme 2
Fig. 3

Reproduced with permission from Ref. [53]. Copyright 2020, Wiley–VCH. e Schematic representation of sample preparation and time evolution of temperature during 55-ms thermal shock; f microscopic images of fine precursor salt particles on carbon nanofibers (CNFs) support before thermal shock and well-dispersed (PtNi) nanoparticles synthesized after CTS; g low power single particle element diagram, high-angle annular dark-field (HAADF) image and corresponding atom diagram of binary PtNi alloy and HEA-NP element diagram composed of eight different elements, scale bars: 10 nm. Reproduced with permission from Ref. [31]. Copyright 2018, American Association for the Advancement of Science

Fig. 4

Reproduced with permission from Ref. [63]. Copyright 2021, Elsevier. e Composition and grain size distribution of various alloys observed in 0 at% Ti and 7 at% Ti; f representative selection diffraction patterns of HEAs. Reproduced with permission from Ref. [64]. Copyright 2017, Elsevier

Fig. 5

Reproduced with permission from Ref. [69]. Copyright 2021, American Chemical Society. e Table of contents (TOC) diagram of material synthesis characterization and testing; f TEM micrographs of HEO powder, low and high magnification, selected area electron diffraction (SAED) pattern, particle size histograms and XRD patterns; g HAADF-STEM image and EDS elemental map of HEO nanoparticles calcined at 950 °C. Reproduced with permission from Ref. [70]. Copyright 2021, Elsevier

Fig. 6

Reproduced with permission from Ref. [83]. Copyright 2019, The Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [94]. Copyright 2019, The Royal Society of Chemistry. c Composition analysis diagram endothermic proof diagram and extended X-ray absorption fine structure, where S/kB is calculated configurational entropy in an N-component solid solutions as a function of mol% of the Nth component, abscissa k is photo electron wave. Reproduced with permission from Ref. [92]. Copyright 2015, Springer Nature Limited. d Characteristic XRD patterns of medium and high entropy NAs; e STEM-EDS of different HEA-NPs; f elemental characteristics of Rh0.5Pt0.5NA samples; g elemental characteristics of Rh0.5Ru0.5NA samples. Reproduced with permission from Ref. [95]. Copyright 2019, Wiley–VCH

Fig. 8

Reproduced with permission from Ref. [103]. Copyright 2020, Springer Nature Limited. d SEM images and XRD patterns of mechanically activated mixture HfNbTaTiZr, combustion products, and spark plasma-sintered high entropy nitrides; e diagram of elements corresponding to three products; f plot of fracture toughness versus hardness, and measurements for high-entropy nitrides and previously reported ceramics. Reproduced with permission from Ref. [105]. Copyright 2020, Springer Nature Limited

Scheme 3
Fig. 9

Reproduced with permission from Ref. [126]. Copyright 2020, The Royal Society of Chemistry. d HER polarization curves of us-HEA/C, precursor, C, commercial Rh/C, commercial Pt/C before and after electrochemical active surface area (ECSA) standardization and specific activities of ECSA; e HER polarization curves after standardized flat metal mass loading, where mass activities at different potentials were quantitatively compared and us-HEA/C quality activities with use of actual precious metal catalysts were compared; f comparison of turnover frequencies of us-HEA/C and other advanced noble metal catalysts reported previously. Reproduced with permission from Ref. [127]. Copyright 2021, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [141]. Copyright 2020, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [149]. Copyright 2020, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [174]. Copyright 2018, Springer Nature Limited

Fig. 13

Reproduced with permission from Ref. [178]. Copyright 2021, American Association for the Advancement of Science

Fig. 14

Reproduced with permission from Ref. [183]. Copyright 2020, Elsevier

Fig. 15

Reproduced with permission from Ref. [187]. Copyright 2017, Elsevier. c TEM characterization and EDS mapping of as-milled Mg12Al11Ti33Mn11Nb33 powder; d differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and quadrupole mass spectrometer (QMS) curves of Mg12Al11Ti33Mn11Nb33 after PCT measurement. Reproduced with permission from Ref. [192]. Copyright 2021, Elsevier

Fig. 16

Reproduced with permission from Ref. [195]. Copyright 2020, Elsevier. c Plot of ΔSmix versus δ of alloys; d thermomagnetic curve measured at 2 K·min−1. Reproduced with permission from Ref. [197]. Copyright 2020, Elsevier

Fig. 17

Reproduced with permission from Ref. [210]. Copyright 2019, Elsevier

Similar content being viewed by others

References

  1. Ogawa Y, Ando D, Sutou Y, Koike J. A lightweight shape-memory magnesium alloy. Science. 2016;353(6297):368. https://doi.org/10.1126/science.aaf6524.

    Article  CAS  Google Scholar 

  2. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515. https://doi.org/10.1038/s41578-019-0121-4.

    Article  CAS  Google Scholar 

  3. Liu J, Shao G, Liu D, Chen K, Wang K, Ma B, Ren K, Wang Y. Design and synthesis of chemically complex ceramics from the perspective of entropy. Mater Today Adv. 2020;8:100114. https://doi.org/10.1016/j.mtadv.2020.100114.

    Article  Google Scholar 

  4. Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016;61(3):183. https://doi.org/10.1080/09506608.2016.1180020.

    Article  CAS  Google Scholar 

  5. Yeh JW, Chen SY, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  6. Cui K, Liaw PK, Zhang Y. Cryogenic-mechanical properties and applications of multiple-basis-element alloys. Metals. 2022;12(12):2075. https://doi.org/10.3390/met12122075.

    Article  CAS  Google Scholar 

  7. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  8. Ying T, Yu T, Qi Y, Chen X, Hosono H. High entropy van der waals materials. Adv Sci. 2022;9(30):2203219. https://doi.org/10.1002/advs.202203219.

    Article  CAS  Google Scholar 

  9. Cong L, Zhang S, Gu S, Li W. Thermophysical properties of a novel high entropy hafnate ceramic. J Mater Sci Technol. 2021;85(20):152. https://doi.org/10.1016/j.jmst.2021.02.005.

    Article  CAS  Google Scholar 

  10. Zhao YJ, Qiao JW, Ma SG, Gao MC, Yang HJ, Chen MW, Zhang Y. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des. 2016;96(15):10. https://doi.org/10.1016/j.matdes.2016.01.149.

    Article  CAS  Google Scholar 

  11. Zhang RZ, Reece MJ. Review of high entropy ceramics: design, synthesis, structure and properties. J Mater Chem A. 2019;7:22148. https://doi.org/10.1039/c9ta05698j.

    Article  CAS  Google Scholar 

  12. Joo SH, Bae JW, Park WY, Shimada Y, Wada T, Kim HS, Takeuchi A, Konno TJ, Kato H, Okulov IV. Nanoporous materials: beating thermal coarsening in nanoporous materials via high-entropy design. Adv Mater. 2020;32(6):2070044. https://doi.org/10.1002/adma.202070044.

    Article  Google Scholar 

  13. Zhi WC, Li X, Zachary G, Xue Y, Chandra S. High-throughput and machine-learning accelerated design of high entropy alloy catalysts. Trends Chem. 2022;4(7):577. https://doi.org/10.1016/j.trechm.2022.03.010.

    Article  CAS  Google Scholar 

  14. Ma Z, Xu T, Li W, Cheng Y, Li J, Zhang D, Jiang Q, Luo Y, Yang J. High entropy semiconductor AgMnGeSbTe4 with desirable thermoelectric performance. Adv Funct Mater. 2021;31(30):2103197. https://doi.org/10.1002/adfm.202103197.

    Article  CAS  Google Scholar 

  15. Chaudhary V, Mantri SA, Ramanujan RV, Banerjee R. Additive manufacturing of magnetic materials. Progress Mater Sci. 2020;114:100688. https://doi.org/10.1016/j.pmatsci.2020.100688.

    Article  CAS  Google Scholar 

  16. Kim JH, Hidayati R, Jung SG, Salawu YA, Kim HJ, Yun JH, Rhyee JS. Enhancement of critical current density and strong vortex pinning in high entropy alloy superconductor Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 synthesized by spark plasma sintering. Acta Mater. 2022;232(15):117971. https://doi.org/10.1016/j.actamat.2022.117971.

    Article  CAS  Google Scholar 

  17. Wang X, Dong Q, Qiao H, Huang Z, Saray MT, Zhong G, Lin Z, Cui M, Brozena A, Hong M, Xia Q, Gao J, Chen G, Shahbazian-Yassar R, Wang D, Hu L. Catalytic materials: continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv Mater. 2020;32(46):2070341. https://doi.org/10.1002/adma.202070341.

    Article  Google Scholar 

  18. Chaudhary V, Chaudhary R, Banerjee R, Ramanujan RV. Accelerated and conventional development of magnetic high entropy alloys. Mater Today. 2021;49:231. https://doi.org/10.1016/j.mattod.2021.03.018.

    Article  CAS  Google Scholar 

  19. Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh TG, Lu Z. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563(7732):546. https://doi.org/10.1038/s41586-018-0685-y.

    Article  CAS  Google Scholar 

  20. Shi P, Ren W, Zheng T, Ren Z, Hou X, Peng J, Hu P, Gao Y, Zhong Y, Liaw PK. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019;10:489. https://doi.org/10.1038/s41467-019-08460-2.

    Article  CAS  Google Scholar 

  21. Jinming X, Jiao M, Yi P, Shuai C, Songtao Z, Huan P. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chin Chem Lett. 2022;34(4):107527. https://doi.org/10.1016/j.cclet.2022.05.041.

    Article  CAS  Google Scholar 

  22. Geng P, Du M, Wu C, Luo T, Zhang Y, Pang H. PPy-constructed core–shell structures from MOFs for confining lithium polysulfides. Inorg Chem Front. 2022;9:2389. https://doi.org/10.1039/d2qi00392a.

    Article  CAS  Google Scholar 

  23. Zheng S, Zhou H, Xue H, Braunstein P, Pang H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. J Colloid Interface Sci. 2022;614(15):130. https://doi.org/10.1016/j.jcis.2022.01.094.

    Article  CAS  Google Scholar 

  24. Tang Y, Zheng S, Cao S, Yang F, Guo X, Zhang S, Xue H, Pang H. Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. J Colloid Interface Sci. 2022;626(15):1062. https://doi.org/10.1016/j.jcis.2022.07.034.

    Article  CAS  Google Scholar 

  25. Yang F, Du M, Yin K, Qiu Z, Zhao J, Liu C, Zhang G, Gao Y, Pang H. Applications of metal-organic frameworks in water treatment: a review. Small. 2021;18(11):2105715. https://doi.org/10.1002/smll.202105715.

    Article  CAS  Google Scholar 

  26. Zhou H, Cao W, Sun N, Jiang L, Liu Y, Pang H. Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites. Chin Chem Lett. 2021;32(10):3123. https://doi.org/10.1016/j.cclet.2021.03.050.

    Article  CAS  Google Scholar 

  27. Geng P, Wang L, Du M, Bai Y, Li W, Liu Y, Chen S, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li–S batteries: shape or size? Adv Mater. 2021;34(4):2107836. https://doi.org/10.1002/adma.202107836.

    Article  CAS  Google Scholar 

  28. Zhang G, Li Y, Xiao X, Shan Y, Bai Y, Xue H, Pang H, Tian Z, Xu Q. In situ anchoring polymetallic phosphide nanoparticles within porous Prussian Blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021;21(7):3016. https://doi.org/10.1021/acs.nanolett.1c00179.

    Article  CAS  Google Scholar 

  29. Shan Y, Zhang G, Yin W, Pang H, Xu Q. Recent progress in Prussian Blue/Prussian Blue analogue-derived metallic compounds. Bull Chem Soc Jpn. 2021;92(2):230. https://doi.org/10.1246/bcsj.20210324.

    Article  CAS  Google Scholar 

  30. Du M, Geng P, Pei C, Jiang X, Shan Y, Hu W, Ni L, Pang H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew Chem Int Ed. 2022;61(41):e202209350. https://doi.org/10.1002/anie.202209350.

    Article  CAS  Google Scholar 

  31. Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu L. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359(6383):1489. https://doi.org/10.1126/science.aan5412.

    Article  CAS  Google Scholar 

  32. Cantor B. Multicomponent and high entropy alloys. Entropy. 2014;16(9):4749. https://doi.org/10.3390/e16094749.

    Article  CAS  Google Scholar 

  33. Joo SH, Bae TJ, Park W, Shimada Y, Wada T, Kim HS, Takeuchi A, Konno TJ, Kato H, Okulov IV. Beating thermal coarsening in nanoporous materials via high-entropy design. Adv Mater. 2020;32(6):1906160. https://doi.org/10.1002/adma.201906160.

    Article  CAS  Google Scholar 

  34. Mazza AR, Skoropata E, Sharma Y, Lapano J, Heitmann TW, Musico BL, Keppens V, Gai Z, Freeland JW, Charlton TR, Brahlek M, Moreo A, Dagotto E, Ward TZ. Designing magnetism in high entropy oxides. Adv Sci. 2022;9(10):2270062. https://doi.org/10.1002/advs.202270062.

    Article  Google Scholar 

  35. Ying HQ, Liu SN, Wu ZD, Dong WX, Ge JC, Hahn H, Provenzano V, Wang XL, Lan S. Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders. Rare Met. 2022;41(6):2021. https://doi.org/10.1007/s12598-022-01973-8.

    Article  CAS  Google Scholar 

  36. Shen L, Du Z, Zhang Y, Dong X, Zhao H. Medium-entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl Catal B: Environ. 2021;295(15):120264. https://doi.org/10.1016/j.apcatb.2021.120264.

    Article  CAS  Google Scholar 

  37. Qiao H, Saray T, Wang X, Xu S, Chen G, Huang Z, Chen C, Zhong G, Dong Q, Hong M, Xie H, Shahbazian R, Hu L. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano. 2021;15(9):14928. https://doi.org/10.1021/acsnano.1c05113.

    Article  CAS  Google Scholar 

  38. Wang JJ, Kou ZD, Fu S, Wu SS, Liu SN, Yan MY, Wang D, Lan S, Hahn H, Feng T. Microstructure and magnetic properties evolution of Al/CoCrFeNi nanocrystalline high-entropy alloy composite. Rare Met. 2022;41(6):2038. https://doi.org/10.1007/s12598-021-01931-w.

    Article  CAS  Google Scholar 

  39. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887. https://doi.org/10.1016/j.actamat.2013.04.058.

    Article  CAS  Google Scholar 

  40. Wang P, Bu Y, Liu J, Li Q, Wang H, Yang W. Atomic deformation mechanism and interface toughening in metastable high entropy alloy. Mater Today. 2020;37:64. https://doi.org/10.1016/j.mattod.2020.02.017.

    Article  CAS  Google Scholar 

  41. Su L, Huyan H, Sarkar A, Gao W, Yan X, Addiego C, Kruk R, Hahn H, Pan X. Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides. Nat Commun. 2022;13:2358. https://doi.org/10.1038/s41467-022-30018-y.

    Article  CAS  Google Scholar 

  42. Yeh JW. Alloy design strategies and future trends in high-entropy alloys. JOM. 2013;65:1759. https://doi.org/10.1007/s11837-013-0761-6.

    Article  CAS  Google Scholar 

  43. Lee C, Chou Y, Kim G, Gao MC, An K, Brechtl J, Zhang C, Chen W, Poplawsky JD, Song G, Ren Y, Chou YC, Liaw PK. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater. 2020;32(49):2004029. https://doi.org/10.1002/adma.202004029.

    Article  CAS  Google Scholar 

  44. Jiang S, Tian K, Li X, Duan C, Wang D, Wang Z, Sun H, Zheng R, Liu Y. Amorphous high-entropy non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. J Colloid Interface Sci. 2021;606:635. https://doi.org/10.1016/j.jcis.2021.08.060.

    Article  CAS  Google Scholar 

  45. Zhou A, Lin C, Li B, Cheng W, Guo Z, Hou Z, Yuan F, Chai GL. Ba6In6Zn4Se19: a high performance infrared nonlinear optical crystal with [InSe3]3− trigonal planar functional motifs. J Mater Chem C. 2020;8:7947. https://doi.org/10.1039/d0tc01282c.

    Article  CAS  Google Scholar 

  46. Ahn M, Park Y, Lee SH, Chae S, Lee J, Heron JT, Kioupakis E, Lu WD, Phillips JD. Memristors based on (Zr, Hf, Nb, Ta, Mo, W) high-entropy oxides. Adv Electron Mater. 2021;7(5):2001258. https://doi.org/10.1002/aelm.202001258.

    Article  CAS  Google Scholar 

  47. Wang B, Yao Y, Yu X, Wang C, Wu C, Zou Z. Understanding the enhanced catalytic activity of high entropy alloys: from theory to experiment. J Mater Chem A. 2021;9:19410. https://doi.org/10.1039/d1ta02718b.

    Article  CAS  Google Scholar 

  48. Li H, Zhang X, Sun Z, Ma W. Rapid screening of bimetallic electrocatalysts using single nanoparticle collision electrochemistry. J Am Chem Soc. 2022;144(36):16480. https://doi.org/10.1021/jacs.2c05299.

    Article  CAS  Google Scholar 

  49. Du M, Li Q, Pang H. Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. J Colloid Interface Sci. 2020;580(15):614. https://doi.org/10.1016/j.jcis.2020.07.009.

    Article  CAS  Google Scholar 

  50. Liu Y, Peng N, Yao Y, Zhang X, Peng X, Zhao L, Wang J, Peng L, Wang Z, Mochizuki K, Yue M, Yang S. Breaking the nanoparticle’s dispersible limit via rotatable surface ligands. Nat Commun. 2022;13:3581. https://doi.org/10.1038/s41467-022-31275-7.

    Article  CAS  Google Scholar 

  51. Godeffroy L, Ciocci P, Nsabimana A, Miranda Vieira M, Noël JM, Combellas C, Lemineur JF, Kanoufi F. Deciphering competitive routes for nickel-based nanoparticle electrodeposition by an operando optical monitoring. Angew Chem Int Ed. 2021;60(31):16980. https://doi.org/10.1002/anie.202106420.

    Article  CAS  Google Scholar 

  52. Sure J, Vishnu DSM, Schwandt C. Direct electrochemical synthesis of high-entropy alloys from metal oxides. Appl Mater Today. 2017;9:111. https://doi.org/10.1016/j.apmt.2017.05.009.

    Article  Google Scholar 

  53. Sure J, Sri Maha Vishnu M, Kim HK, Schwandt C. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew Chem Int Ed. 2020;59(29):11830. https://doi.org/10.1002/anie.202003530.

    Article  CAS  Google Scholar 

  54. Kim C, Song JY, Choi C, Ha JP, Lee W, Nam YT, Lee DM, Kim G, Gereige I, Jung WB, Lee H, Jung Y, Jeong H, Jung HT. Atomic-scale homogeneous RuCu alloy nanoparticles for highly efficient electrocatalytic nitrogen reduction. Adv Mater. 2022;34(40):2205270. https://doi.org/10.1002/adma.202205270.

    Article  CAS  Google Scholar 

  55. Abdelhafiz A, Wang B, Harutyunyan AR, Li J. Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv Energy Mater. 2022;12(35):2200742. https://doi.org/10.1002/aenm.202200742.

    Article  CAS  Google Scholar 

  56. Xu X, Guo Y, Bloom BP, Wei J, Li H, Li H, Du Y, Zeng Z, Li L, Waldeck DH. Elemental core level shift in high entropy alloy nanoparticles via X-ray photoelectron spectroscopy analysis and first-principles calculation. ACS Nano. 2020;14(12):17704. https://doi.org/10.1021/acsnano.0c09470.

    Article  CAS  Google Scholar 

  57. Gild J, Wright A, Quiambao-Tomko K, Qin M, Tomko JA, Shafkat Bin Hoque M, Braun JL, Bloomfield B, Martinez D, Harrington T, Vecchio K, Hopkins PE, Luo J. Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering. Ceram Int. 2020;46(5):6906. https://doi.org/10.1016/j.ceramint.2019.11.186.

    Article  CAS  Google Scholar 

  58. Zhang Y, Jiang ZB, Sun SK, Guo WM, Chen QS, Qiu JX, Plucknett K, Lin HT. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. J Eur Ceram Soc. 2019;39(13):3920. https://doi.org/10.1016/j.jeurceramsoc.2019.05.017.

    Article  CAS  Google Scholar 

  59. Zhang Y, Sun SK, Zhang W, You Y, Guo WM, Chen ZW, Yuan JH, Lin HT. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process. Ceram Int. 2020;46(9):14299. https://doi.org/10.1016/j.ceramint.2020.02.214.

    Article  CAS  Google Scholar 

  60. Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev. 2021;439:213915. https://doi.org/10.1016/j.ccr.2021.213915.

    Article  CAS  Google Scholar 

  61. Gild J, Kaufmann K, Vecchio K, Luo J. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scripta Mater. 2019;170:106. https://doi.org/10.1016/j.scriptamat.2019.05.039.

    Article  CAS  Google Scholar 

  62. Lu Y, Dong Y, Jiang H, Wang Z, Cao Z, Guo S, Wang T, Li T, Liaw PK. Promising properties and future trend of eutectic high entropy alloys. Scripta Mater. 2020;187:202. https://doi.org/10.1016/j.scriptamat.2020.06.022.

    Article  CAS  Google Scholar 

  63. Wang X, Peng Q, Zhang X, Lv X, Wang X, Fu Y. Carbonaceous-assisted confinement synthesis of refractory high-entropy alloy nanocomposites and their application for seawater electrolysis. J Colloid Interface Sci. 2022;607:1580. https://doi.org/10.1016/j.jcis.2021.08.201.

    Article  CAS  Google Scholar 

  64. Waseem OA, Lee J, Lee HM, Ryu HJ. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys. 2018;210:87. https://doi.org/10.1016/j.matchemphys.2017.06.054.

    Article  CAS  Google Scholar 

  65. Wei XF, Qin Y, Liu JX, Li F, Liang YC, Zhang GJ. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J Eur Ceram Soc. 2020;40(4):935. https://doi.org/10.1016/j.jeurceramsoc.2019.12.034.

    Article  CAS  Google Scholar 

  66. Roy R, Agrawal D, Cheng J, Gedevanishvili S. Erratum: full sintering of powdered-metal bodies in a microwave field. Nature. 1999;401:304. https://doi.org/10.1038/45853.

    Article  CAS  Google Scholar 

  67. Veronesi P, Rosa R, Colombini E, Leonelli C. Microwave-assisted preparation of high entropy alloys. Technologies. 2015;3(4):182. https://doi.org/10.3390/technologies3040182.

    Article  Google Scholar 

  68. Shuang S, Yu Q, Gao X, He QF, Zhang JY, Shi SQ, Yang Y. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. J Mater Sci Technol. 2021;109(20):197. https://doi.org/10.1016/j.jmst.2021.08.069.

    Article  CAS  Google Scholar 

  69. Qiao H, Saray MT, Wang X, Xu S, Chen G, Huang Z, Chen C, Zhong G, Dong Q, Hong M, Xie H, Shahbazian-Yassar R, Hu L. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano. 2021;15(9):14928. https://doi.org/10.1021/acsnano.1c05113.

    Article  CAS  Google Scholar 

  70. Kheradmandfard M, Minouei H, Tsvetkov N, Vayghan AK, Kashani-Bozorg SF, Kim G, Hong SI, Kim DE. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Mater Chem Phys. 2021;262:124265. https://doi.org/10.1016/j.matchemphys.2021.124265.

    Article  CAS  Google Scholar 

  71. Veronesi P, Colombini E, Rosa R, Leonelli C, Garuti M. Microwave processing of high entropy alloys: a powder metallurgy approach. Chem Eng Process. 2017;122:397. https://doi.org/10.1016/j.cep.2017.02.016.

    Article  CAS  Google Scholar 

  72. Veronesi P, Colombini E, Rosa R, Leonelli C, Rosi F. Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50–x) high entropy alloys. Mater Lett. 2016;162:277. https://doi.org/10.1016/j.matlet.2015.10.035.

    Article  CAS  Google Scholar 

  73. Mao A, Xiang HZ, Zhang ZG, Kuramoto K, Zhang H, Jia Y. A new class of spinel high-entropy oxides with controllable magnetic properties. J Magnet Magnet Mater. 2020;497:165884. https://doi.org/10.1016/j.jmmm.2019.165884.

    Article  CAS  Google Scholar 

  74. Zhang K, Li W, Zeng J, Deng T, Luo B, Zhang H, Huang X. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder. J Alloys Compound. 2020;817:153328. https://doi.org/10.1016/j.jallcom.2019.153328.

    Article  CAS  Google Scholar 

  75. Park JM, Choe J, Kim JG, Bae JW, Moon J, Yang S, Kim KT, Yu JH, Kim HS. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater Res Lett. 2019;8(1):1. https://doi.org/10.1080/21663831.2019.1638844.

    Article  CAS  Google Scholar 

  76. Li B, Zhang L, Yang B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Composites Commun. 2020;19:56. https://doi.org/10.1016/j.coco.2020.03.001.

    Article  Google Scholar 

  77. Johny J, Li Y, Kamp M, Prymak O, Liang SX, Krekeler T, Ritter M, Kienle L, Rehbock C, Barcikowski S, Reichenberger S. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res. 2021;15:4807. https://doi.org/10.1007/s12274-021-3804-2.

    Article  CAS  Google Scholar 

  78. Wen X, Cui X, Jin G, Liu Y, Zhang Y, Fang Y. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nbx eutectic high-entropy alloy coatings by laser cladding: alloy design and microstructure evolution. Surface Coatings Technol. 2021;405:126728. https://doi.org/10.1016/j.surfcoat.2020.126728.

    Article  CAS  Google Scholar 

  79. Tomboc GM, Kwon T, Joo J, Lee K. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J Mater Chem A. 2020;8(30):14844. https://doi.org/10.1039/d0ta05176d.

    Article  CAS  Google Scholar 

  80. Yao H, Tan Z, He D, Zhou Z, Zhou Z, Xue Y, Cui L, Chen L, Wang G, Yang Y. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J Alloys Comp. 2020;813:152196. https://doi.org/10.1016/j.jallcom.2019.152196.

    Article  CAS  Google Scholar 

  81. Fan Y, Li W, Zhi W, Qing W, Ke Z, Xin L, Wei H. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting. J Mater Sci Technol. 2021;106(20):128. https://doi.org/10.1016/j.jmst.2021.08.015.

    Article  CAS  Google Scholar 

  82. Wang J, Wu S, Fu S, Liu S, Ren Z, Yan M, Chen S, Lan S, Hahn H, Feng T. Nanocrystalline CoCrFeNiMn high-entropy alloy with tunable ferromagnetic properties. J Mater Sci Technol. 2021;77:126. https://doi.org/10.1016/j.jmst.2020.10.060.

    Article  CAS  Google Scholar 

  83. Waag F, Li Y, Ziefuss AR, Bertin E, Kamp M, Duppel V, Marzun G, Kienle L, Barcikowski S, Gokce B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019;9(32):18547. https://doi.org/10.1039/c9ra03254a.

    Article  CAS  Google Scholar 

  84. Zhang LT, Duan YJ, Wada T, Kato H, Pelletier JM, Crespo D, Pineda E, Qiao JC. Dynamic mechanical relaxation behavior of Zr3.5Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. J Mater Sci Technol. 2021;83(30):248. https://doi.org/10.1016/j.jmst.2020.11.074.

    Article  CAS  Google Scholar 

  85. He S, Somayaji V, Wang M, Lee SH, Geng Z, Zhu S, Novello P, Varanasi CV, Liu J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2021;15:4785. https://doi.org/10.1007/s12274-021-3665-8.

    Article  CAS  Google Scholar 

  86. Tian Y, Lu C, Shen Y, Feng X. Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method. Surfaces and Interfaces. 2019;15:135. https://doi.org/10.1016/j.surfin.2019.02.004.

    Article  CAS  Google Scholar 

  87. Sang L, Xu Y. Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by mechanical alloying. J Non-Crystall Solids. 2020;530:119854. https://doi.org/10.1016/j.jnoncrysol.2019.119854.

    Article  CAS  Google Scholar 

  88. Velo IL, Gotor FJ, Alcalá MD, Real C, Córdoba JM. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. J Alloy Compd. 2018;746:1. https://doi.org/10.1016/j.jallcom.2018.02.292.

    Article  CAS  Google Scholar 

  89. Liang X, Wei G, Ji Z, Yu Z, Hua L, Shuai Q, Hua L, Zheng F. Low-temperature densification of high entropy diboride based composites with fine grains and excellent mechanical properties. Compos Part B: Eng. 2022;247:110331. https://doi.org/10.1016/j.compositesb.2022.110331.

    Article  CAS  Google Scholar 

  90. Kilmametov A, Kulagin R, Mazilkin A, Seils S, Boll T, Heilmaier M, Hahn H. High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scripta Mater. 2019;158:29. https://doi.org/10.1016/j.scriptamat.2018.08.031.

    Article  CAS  Google Scholar 

  91. Wang G, Liu Q, Yang J, Li X, Sui X, Gu Y, Liu Y. Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying. Int J Refract Metals Hard Mater. 2019;84:104988. https://doi.org/10.1016/j.ijrmhm.2019.104988.

    Article  CAS  Google Scholar 

  92. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP. Entropy-stabilized oxides. Nat Commun. 2015;6:8485. https://doi.org/10.1038/ncomms9485.

    Article  CAS  Google Scholar 

  93. Gracita MT, Xiandi Z, Songa C, Daekyu K, Lawrence Yoon Suk L, Kwangyeol L. Stabilization, characterization, and electrochemical applications of high-entropy oxides: critical assessment of crystal phase–properties relationship. Adv Funct Mater. 2022;32(43):2205142. https://doi.org/10.1002/adfm.202205142.

    Article  CAS  Google Scholar 

  94. Wang D, Liu Z, Du S, Zhang Y, Li H, Xiao Z, Chen W, Chen R, Wang Y, Zou Y, Wang S. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J Mater Chem A. 2019;7(42):24211. https://doi.org/10.1039/c9ta08740k.

    Article  CAS  Google Scholar 

  95. Bondesgaard M, Broge NLN, Mamakhel A, Bremholm M, Iversen BB. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv Func Mater. 2019;29(50):1905933. https://doi.org/10.1002/adfm.201905933.

    Article  CAS  Google Scholar 

  96. Zhao X, Xue Z, Chen W, Wang Y, Mu T. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. Chemsuschem. 2020;13(8):2038. https://doi.org/10.1002/cssc.202000173.

    Article  CAS  Google Scholar 

  97. Yang Y, Song B, Ke X, Xu F, Bozhilov KN, Hu L, Shahbazian-Yassar R, Zachariah MR. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir. 2020;36(8):1985. https://doi.org/10.1021/acs.langmuir.9b03392.

    Article  CAS  Google Scholar 

  98. Su J, Raabe D, Li Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 2019;163:40. https://doi.org/10.1016/j.actamat.2018.10.017.

    Article  CAS  Google Scholar 

  99. Bizhanova G, Li F, Ma Y, Gong P, Wang X. Development and crystallization kinetics of novel near-equiatomic high-entropy bulk metallic glasses. J Alloy Compd. 2019;779:474. https://doi.org/10.1016/j.jallcom.2018.11.299.

    Article  CAS  Google Scholar 

  100. Sanchez JM, Vicario I, Albizuri J, Guraya T, Garcia JC. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. J Market Res. 2019;8(1):795. https://doi.org/10.1016/j.jmrt.2018.06.010.

    Article  CAS  Google Scholar 

  101. Ward-O’Brien B, Pickering EJ, Ahumada-Lazo R, Smith C, Zhong XL, Aboura Y, Alam F, Binks DJ, Burnett TL, Lewis DJ. Synthesis of high entropy lanthanide oxysulfides via the thermolysis of a molecular precursor cocktail. J Am Chem Soc. 2021;143(51):21560. https://doi.org/10.1021/jacs.1c08995.

    Article  CAS  Google Scholar 

  102. Zhao X, Xue Z, Chen W, Bai X, Shi R, Mu T. Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution. J Mater Chem A. 2019;7(46):26238. https://doi.org/10.1039/c9ta09975a.

    Article  CAS  Google Scholar 

  103. Gao S, Hao S, Huang Z, Yuan Y, Han S, Lei L, Zhang X, Shahbazian-Yassar R, Lu J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat Commun. 2020;11:2016. https://doi.org/10.1038/s41467-020-15934-1.

    Article  CAS  Google Scholar 

  104. Liu M, Zhang Z, Okejiri F, Yang S, Zhou S, Dai S. Entropy-Maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv Mater Interfaces. 2019;6(7):1900015. https://doi.org/10.1002/admi.201900015.

    Article  CAS  Google Scholar 

  105. Moskovskikh D, Vorotilo S, Buinevich V, Sedegov A, Kuskov K, Khort A, Shuck C, Zhukovskyi M, Mukasyan A. Extremely hard and tough high entropy nitride ceramics. Sci Rep. 2020;10:19874. https://doi.org/10.1038/s41598-020-76945-y.

    Article  CAS  Google Scholar 

  106. Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47:49. https://doi.org/10.1016/j.mser.2004.11.001.

    Article  CAS  Google Scholar 

  107. Zhou H, Zheng S, Guo X, Gao Y, Li H, Pang H. Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials. J Colloid Interface Sci. 2022;628:24. https://doi.org/10.1016/j.jcis.2022.08.043.

    Article  CAS  Google Scholar 

  108. Hui Z, Hui Y, Shi Y, Li J, Nuo S, Huan P. Synthesis of 3D printing materials and their electrochemical applications. Chin Chem Lett. 2021;33(8):3681. https://doi.org/10.1016/j.cclet.2021.11.018.

    Article  CAS  Google Scholar 

  109. Rong H, Shen J, Gang S. Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis. Progress Mater Sci. 2021;123:100854. https://doi.org/10.1016/j.pmatsci.2021.100854.

    Article  CAS  Google Scholar 

  110. Velasco L, Castillo JS, Kante MV, Olaya JJ, Friederich P, Hahn H. Phase–property diagrams for multicomponent oxide systems toward materials libraries. Adv Mater. 2021;33(43):2102301. https://doi.org/10.1002/adma.202102301.

    Article  CAS  Google Scholar 

  111. He G, Luo Y, Zhai Y, Wu Y, You J, Lu R, Zeng S, Wang ZL. Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output – an approach for efficient usage of high entropy energy. Nano Energy. 2021;87:106195. https://doi.org/10.1016/j.nanoen.2021.106195.

    Article  CAS  Google Scholar 

  112. Chen B, Wang ZL. Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy. Small. 2022;18(43):2107034. https://doi.org/10.1002/smll.202107034.

    Article  CAS  Google Scholar 

  113. Xie P, Yao Y, Huang Z, Liu Z, Zhang J, Li T, Wang G, Shahbazian-Yassar R, Hu L, Wang C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun. 2019;10:4011. https://doi.org/10.1038/s41467-019-11848-9.

    Article  CAS  Google Scholar 

  114. Yuan M, Guo X, Li N, Pang H. Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation. J Colloid Interface Sci. 2020;589:56. https://doi.org/10.1016/j.jcis.2020.12.100.

    Article  CAS  Google Scholar 

  115. Yi P, Yang B, Chun L, Shuai C, Qing K, Huan P. Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord Chem Rev. 2022;466(1):214602. https://doi.org/10.1016/j.ccr.2022.214602.

    Article  CAS  Google Scholar 

  116. Kumar Katiyar N, Biswas K, Yeh JW, Sharma S, Sekhar TC. A perspective on the catalysis using the high entropy alloys. Nano Energy. 2021;88:106261. https://doi.org/10.1016/j.nanoen.2021.106261.

    Article  CAS  Google Scholar 

  117. Jones CW. Another nobel prize for catalysis: Frances Arnold in 2018. ACS Catal. 2018;8(11):10913. https://doi.org/10.1021/acscatal.8b04266.

    Article  CAS  Google Scholar 

  118. Zheng S, Yong Z, Chen S, Qing N, Cheng W, Hai J. High entropy spinel-structure oxide for electrochemical application. Chem Eng J. 2021;431:133448. https://doi.org/10.1016/j.cej.2021.133448.

    Article  CAS  Google Scholar 

  119. Wang X, Zhang G, Yin W, Zheng S, Kong Q, Tian J, Pang H. Metal–organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy. 2022;4(2):246. https://doi.org/10.1002/cey2.182.

    Article  CAS  Google Scholar 

  120. Yin W, Zhang G, Wang X, Pang H. One-dimensional metal-organic frameworks for electrochemical applications. Adv Colloid Interface Sci. 2021;298:102562. https://doi.org/10.1016/j.cis.2021.102562.

    Article  CAS  Google Scholar 

  121. Wu L, Hofmann JP. Comparing the intrinsic HER activity of transition metal dichalcogenides: pitfalls and suggestions. ACS Energy Lett. 2021;6(7):2619. https://doi.org/10.1021/acsenergylett.1c00912.

    Article  CAS  Google Scholar 

  122. Chang Y, Zhai P, Hou J, Zhao J, Gao J. Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe2: from simulation to experiment. Adv Energy Mater. 2022;12:2102359. https://doi.org/10.1002/aenm.202102359.

    Article  CAS  Google Scholar 

  123. Wang S, Xu B, Huo W, Feng H, Zhou X, Fang F, Xie Z, Shang JK, Jiang J. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl Catal B: Environ. 2022;313(15):121472. https://doi.org/10.1016/j.apcatb.2022.121472.

    Article  CAS  Google Scholar 

  124. Edalati P, Shen XF, Watanabe M, Ishihara T, Arita M, Fuji M, Edalati K. High-entropy oxynitride as a low-bandgap and stable photocatalyst for hydrogen production. J Mater Chem A. 2021;9(26):15076. https://doi.org/10.1039/d1ta03861c.

    Article  CAS  Google Scholar 

  125. Shun C, Chih C, Po C, Chun H, Shih L. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem Eng J. 2022;446:137452. https://doi.org/10.1016/j.cej.2022.137452.

    Article  CAS  Google Scholar 

  126. Wu D, Kusada K, Yamamoto T, Toriyama T, Matsumura S, Gueye I, Seo O, Kim J, Hiroi S, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem Sci. 2020;11(47):12731. https://doi.org/10.1039/d0sc02351e.

    Article  CAS  Google Scholar 

  127. Feng G, Ning F, Song J, Shang H, Zhang K, Ding Z, Gao P, Chu W, Xia D. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J Am Chem Soc. 2021;143(41):17117. https://doi.org/10.1021/jacs.1c07643.

    Article  CAS  Google Scholar 

  128. Edalati P, Wang Q, Razavi-Khosroshahi H, Fuji M, Ishihara T, Edalati K. Photocatalytic hydrogen evolution on a high-entropy oxide. J Mater Chem A. 2020;8(7):3814. https://doi.org/10.1039/c9ta12846h.

    Article  CAS  Google Scholar 

  129. Nguyen TX, Su YH, Lin CC, Ting JM. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv Func Mater. 2021;31(48):2106229. https://doi.org/10.1002/adfm.202106229.

    Article  CAS  Google Scholar 

  130. Xu Y, Sun L, Li Q, Huo LH, Zhao H. Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr0.2Mn0.2Fe0.2Ni0.2Zn0.2)3O4 for the oxygen evolution reaction. J Mater Chem A. 2022;10(34):17633. https://doi.org/10.1039/d2ta01376b.

    Article  CAS  Google Scholar 

  131. Lalita S, Nirmal KK, Arko P, Rakesh D, Ritesh K, Chandra ST, Abhisek KS, Aditi H, Krishanu B. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022;15:4799. https://doi.org/10.1007/s12274-021-3802-4.

    Article  CAS  Google Scholar 

  132. Wen H, Ming Z, Hui D, Wei Z, Ying W, Yi Z, Kun P, Huan P. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chin Chem Lett. 2021;33(3):1412. https://doi.org/10.1016/j.cclet.2021.08.025.

    Article  CAS  Google Scholar 

  133. Nguyen TX, Su YH, Lin CC, Ruan J, Ting JM. A new high entropy glycerate for high performance oxygen evolution reaction. Adv Sci. 2021;8(6):2002446. https://doi.org/10.1002/advs.202002446.

    Article  CAS  Google Scholar 

  134. Mei H, Changhong W, Jun Z, Jingrui H, Ning W, Ali S, Yifu Y, Yongchang L, Xuhui S, Alberto V, Hongyan L. Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Appl Catal B: Environ. 2021;301:120764. https://doi.org/10.1016/j.apcatb.2021.120764.

    Article  CAS  Google Scholar 

  135. Tang J, Xu JL, Ye ZG, Li XB, Luo JM. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. J Mater Sci Technol. 2021;79:171. https://doi.org/10.1016/j.jmst.2020.10.079.

    Article  CAS  Google Scholar 

  136. Shi W, Wen H, Feng F, Zong X, Jian S, Jian J. High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem Eng J. 2021;429(1):132410. https://doi.org/10.1016/j.cej.2021.132410.

    Article  CAS  Google Scholar 

  137. Cui M, Yang C, Li B, Dong Q, Wu M, Hwang S, Xie H, Wang X, Wang G, Hu L. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater. 2020;11(3):2002887. https://doi.org/10.1002/aenm.202002887.

    Article  CAS  Google Scholar 

  138. Dai W, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J Power Sources. 2019;430:104. https://doi.org/10.1016/j.jpowsour.2019.05.030.

    Article  CAS  Google Scholar 

  139. Thi N, Yi L, Chia L, Yen S, Jyh T. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv Func Mater. 2021;31(7):2101632. https://doi.org/10.1002/adfm.202101632.

    Article  CAS  Google Scholar 

  140. Ding Z, Bian J, Shuang S, Liu X, Hu Y, Sun C, Yang Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv Sustain Syst. 2020;4(5):1900105. https://doi.org/10.1002/adsu.201900105.

    Article  CAS  Google Scholar 

  141. Wang T, Chen H, Yang Z, Liang J, Dai S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J Am Chem Soc. 2020;142(10):4550. https://doi.org/10.1021/jacs.9b12377.

    Article  CAS  Google Scholar 

  142. Yang JX, Dai BH, Chiang CY, Chiu IC, Pao CW, Lu SY, Tsao IY, Lin ST, Chiu CT, Yeh JW, Chang PC, Hung WH. Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions. ACS Nano. 2021;15(7):12324. https://doi.org/10.1021/acsnano.1c04259.

    Article  CAS  Google Scholar 

  143. Chen Y, Zhan X, Bueno SLA, Shafei IH, Ashberry HM, Chatterjee K, Xu L, Tang Y, Skrabalak SE. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 2021;6(3):231. https://doi.org/10.1039/d0nh00656d.

    Article  CAS  Google Scholar 

  144. Qiu HJ, Fang G, Wen Y, Liu P, Xie G, Liu X, Sun S. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J Mater Chem A. 2019;7(11):6499. https://doi.org/10.1039/c9ta00505f.

    Article  CAS  Google Scholar 

  145. Li S, Tang X, Jia H, Li H, Xie G, Liu X, Lin X, Qiu HJ. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J Catal. 2020;383:164. https://doi.org/10.1016/j.jcat.2020.01.024.

    Article  CAS  Google Scholar 

  146. Chen H, Lin W, Zhang Z, Jie K, Mullins DR, Sang X, Yang SZ, Jafta CJ, Bridges CA, Hu X, Unocic RR, Fu J, Zhang P, Dai S. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater Lett. 2019;1(1):83. https://doi.org/10.1021/acsmaterialslett.9b00064.

    Article  CAS  Google Scholar 

  147. Okejiri F, Zhang Z, Liu J, Liu M, Yang S, Dai S. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method. Chemsuschem. 2020;13(1):111. https://doi.org/10.1002/cssc.201902705.

    Article  CAS  Google Scholar 

  148. Nellaiappan S, Katiyar NK, Kumar R, Parui A, Malviya KD, Pradeep KG, Singh AK, Sharma S, Tiwary CS, Biswas K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization. ACS Catal. 2020;10(6):3658. https://doi.org/10.1021/acscatal.9b04302.

    Article  CAS  Google Scholar 

  149. Pedersen JK, Batchelor TAA, Bagger A, Rossmeisl J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020;10(3):2169. https://doi.org/10.1021/acscatal.9b04343.

    Article  CAS  Google Scholar 

  150. Sun F, Li Q, Bai Y, Zhang G, Zheng S, Peng M, Chen X, Lin N, Pang H. A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.10.075.

    Article  Google Scholar 

  151. Li N, Guo X, Tang X, Xing Y, Pang H. Three-dimensional Co2V2O7·nH2O superstructures assembled by nanosheets for electrochemical energy storage. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.05.012.

    Article  Google Scholar 

  152. Bai Y, Liu C, Chen T, Li W, Zheng S, Pi Y, Luo Y, Pang H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed. 2021. https://doi.org/10.1002/anie.202112381.

    Article  Google Scholar 

  153. Zheng S, Ru Y, Xue H, Pang H. Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.05.010.

    Article  Google Scholar 

  154. Jing Q, Li W, Wang J, Chen X, Pang H. Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. Inorg Chem Front. 2021. https://doi.org/10.1039/d1qi00797a.

    Article  Google Scholar 

  155. Wu X, Ru Y, Bai Y, Zhang G, Shi Y, Pang H. PBA composites and their derivatives in energy and environmental applications. Coord Chem Rev. 2022;451:214260. https://doi.org/10.1016/j.ccr.2021.214260s.

    Article  CAS  Google Scholar 

  156. Sure J, Sri Maha Vishnu D, Kim HK, Schwandt C. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew Chem Int Ed. 2020;59(292):11830. https://doi.org/10.1002/anie.202003530.

    Article  CAS  Google Scholar 

  157. Sure J, Sri Maha Vishnu D, Kim HK, Schwandt C. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew Chem. 2020;132(29):11928. https://doi.org/10.1002/ange.202003530.

    Article  Google Scholar 

  158. Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew Chem Int Ed. 2022. https://doi.org/10.1002/anie.202116282.

    Article  Google Scholar 

  159. Lal MS, Sundara R. Multifunctional high entropy oxides incorporated functionalized biowaste derived activated carbon for electrochemical energy storage and desalination. Electrochim Acta. 2022;405:139828. https://doi.org/10.1016/j.electacta.2021.139828.

    Article  CAS  Google Scholar 

  160. Yuan Y, Xu Z, Han P, Dan Z, Qin F, Chang H. MnO2-decorated metallic framework supercapacitors fabricated from duplex-phase FeCrCoMnNiAl0.75 Cantor high entropy alloy precursors through selective phase dissolution. J Alloys Comp. 2021;870:159523. https://doi.org/10.1016/j.jallcom.2021.159523.

    Article  CAS  Google Scholar 

  161. Lal MS, Sundara R. High entropy oxides-a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications. ACS Appl Mater Interfaces. 2019;11(34):30846. https://doi.org/10.1021/acsami.9b08794.

    Article  CAS  Google Scholar 

  162. Jin T, Sang X, Unocic RR, Kinch RT, Liu X, Hu J, Liu H, Dai S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv Mater. 2018;30(23):1707512. https://doi.org/10.1002/adma.201707512.

    Article  CAS  Google Scholar 

  163. Kong K, Hyun J, Kim Y, Kim W, Kim D. Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode. J Power Sourc. 2019;437:226927. https://doi.org/10.1016/j.jpowsour.2019.226927.

    Article  CAS  Google Scholar 

  164. Shen E, Song X, Chen Q, Zheng M, Bian J, Liu H. Spontaneously forming oxide layer of high entropy alloy nanoparticles deposited on porous carbons for supercapacitors. ChemElectroChem. 2021;8(1):260. https://doi.org/10.1002/celc.202001289.

    Article  CAS  Google Scholar 

  165. Talluri B, Aparna ML, Sreenivasulu N, Bhattacharya SS, Thomas T. High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material. J Energy Storage. 2021;42:103004. https://doi.org/10.1016/j.est.2021.103004.

    Article  Google Scholar 

  166. Xu X, Du Y, Wang C, Guo Y, Zou J, Zhou K, Zeng Z, Liu Y, Li L. High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors. J Alloys Comp. 2020;822:153642. https://doi.org/10.1016/j.jallcom.2020.153642.

    Article  CAS  Google Scholar 

  167. Cui Y, Sukkurji PA, Wang K, Azmi R, Nunn AM, Hahn H, Breitung B, Ting YY, Kowalski P, Kaghazchi P, Wang Q, Schweidler S, Botros M. High entropy fluorides as conversion cathodes with tailorable electrochemical performance. J Energy Chem. 2022;72:342. https://doi.org/10.1016/j.jechem.2022.05.032.

    Article  CAS  Google Scholar 

  168. Nguyen TX, Tsai CC, Patra J, Clemens O, Chang JK, Ting JM. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in Lithium-ion batteries. Chem Eng J. 2021;430:132658. https://doi.org/10.1016/j.cej.2021.132658.

    Article  CAS  Google Scholar 

  169. Zhang S, Liu Z, Li L, Tang Y, Li S, Huang H, Zhang H. Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. J Mater Chem A. 2021;9(34):18488. https://doi.org/10.1039/d1ta05205e.

    Article  CAS  Google Scholar 

  170. Sun F, Chen T, Li Q, Pang H. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous nickel-zinc battery. J Colloid Interface Sci. 2022;627:483. https://doi.org/10.1016/j.jcis.2022.07.053.

    Article  CAS  Google Scholar 

  171. Fan L, Guo X, Hang X, Pang H. Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. J Colloid Interface Sci. 2021;607:1898. https://doi.org/10.1016/j.jcis.2021.10.025.

    Article  CAS  Google Scholar 

  172. Guo X, Li W, Geng P, Zhang Q, Pang H, Xu Q. Construction of SiOx/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. J Colloid Interface Sci. 2021;606:784. https://doi.org/10.1016/j.jcis.2021.08.065.

    Article  CAS  Google Scholar 

  173. Li W, Guo X, Geng P, Du M, Jing Q, Chen X, Zhang G, Li H, Xu Q, Braunstein P, Pang H. Rational design and general synthesis of multimetallic metal–organic framework nano-octahedra for enhanced Li–S battery. Adv Mater. 2021;33(45):2105163. https://doi.org/10.1002/adma.202105163.

    Article  CAS  Google Scholar 

  174. Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, de Biasi L, Kubel C, Brezesinski T, Bhattacharya SS, Hahn H, Breitung B. High entropy oxides for reversible energy storage. Nat Commun. 2018;9:3400. https://doi.org/10.1038/s41467-018-05774-5.

    Article  CAS  Google Scholar 

  175. Sarkar A, Wang Q, Schiele A, Chellali MR, Bhattacharya SS, Wang D, Brezesinski T, Hahn H, Velasco L, Breitung B. High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater. 2019;31(26):1806236. https://doi.org/10.1002/adma.201806236.

    Article  CAS  Google Scholar 

  176. Wang Q, Sarkar A, Wang D, Velasco L, Azmi R, Bhattacharya SS, Bergfeldt T, Düvel A, Heitjans P, Brezesinski T, Hahn H, Breitung B. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ Sci. 2019;12(8):2433. https://doi.org/10.1039/c9ee00368a.

    Article  CAS  Google Scholar 

  177. Wang D, Jiang S, Duan C, Mao J, Dong Y, Dong K, Wang Z, Luo S, Liu Y, Qi X. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J Alloys Compd. 2020;844:156158. https://doi.org/10.1016/j.jallcom.2020.156158.

    Article  CAS  Google Scholar 

  178. Jiang B, Yu Y, Cui J, Liu X. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science. 2021;371(6531):430–4. https://doi.org/10.1126/science.abe1292.

    Article  CAS  Google Scholar 

  179. Hu L, Zhang Y, Wu H, Li J, Li Y, McKenna M, He J, Liu F, Pennycook SJ, Zeng X. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performanc. Adv Energy Mater. 2018;8(29):1802116. https://doi.org/10.1002/aenm.201802116.

    Article  CAS  Google Scholar 

  180. Ma Y, Ma Y, Dreyer SL, Wang Q, Wang K, Goonetilleke D, Omar A, Mikhailova D, Hahn H, Breitung B, Brezesinski T. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv Mater. 2021;33(34):2101342. https://doi.org/10.1002/adma.202101342.

    Article  CAS  Google Scholar 

  181. Lu Y, Huang H, Gao X, Ren C, Gao J, Zhang H, Zheng S, Jin Q, Zhao Y, Lu C, Wang T, Li T. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol. 2019;35(3):369. https://doi.org/10.1016/j.jmst.2018.09.034.

    Article  CAS  Google Scholar 

  182. Pogrebnjak AD, Yakushchenko IV, Bondar OV, Beresnev VM, Oyoshi K, Ivasishin OM, Amekura H, Takeda Y, Opielak M, Kozak C. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings. J Alloy Compd. 2016;679:155. https://doi.org/10.1016/j.jallcom.2016.04.064.

    Article  CAS  Google Scholar 

  183. Lin Y, Yang T, Lang L, Shan C, Deng H, Hu W, Gao F. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater. 2020;196:133. https://doi.org/10.1016/j.actamat.2020.06.027.

    Article  CAS  Google Scholar 

  184. Fan L, Ji Y, Wang G, Chen J, Chen K, Liu X, Wen Z. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J Am Chem Soc. 2022;144(16):7224. https://doi.org/10.1021/jacs.1c13740.

    Article  CAS  Google Scholar 

  185. Yi G, Miao Z, Yan M, Han C, Shu Z, Wen W, Cheng S, Zhan S, Jing S, Xi Z. Microwave-triggered low temperature thermal reduction of Zr-modified high entropy oxides with extraordinary thermochemical H2 production performance. Energy Convers Manag. 2021;252(15):115125. https://doi.org/10.1016/j.enconman.2021.115125.

    Article  CAS  Google Scholar 

  186. Zepon G, Leiva DR, Strozi RB, Bedoch A, Figueroa SJA, Ishikawa TT, Botta WJ. Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy. Int J Hydrog Energy. 2018;43(3):1702. https://doi.org/10.1016/j.ijhydene.2017.11.106.

    Article  CAS  Google Scholar 

  187. Kunce I, Polański M, Czujko T. Microstructures and hydrogen storage properties of LaNiFeVMn alloys. Int J Hydrog Energy. 2017;42(44):27154. https://doi.org/10.1016/j.ijhydene.2017.09.039.

    Article  CAS  Google Scholar 

  188. Nygård MM, Ek G, Karlsson D, Sahlberg M, Sørby MH, Hauback BC. Hydrogen storage in high-entropy alloys with varying degree of local lattice strain. Int J Hydrog Energy. 2019;44(55):29140. https://doi.org/10.1016/j.ijhydene.2019.03.223.

    Article  CAS  Google Scholar 

  189. Edalati P, Floriano R, Mohammadi A, Li Y, Zepon G, Li HW, Edalati K. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Mater. 2020;178:387. https://doi.org/10.1016/j.scriptamat.2019.12.009.

    Article  CAS  Google Scholar 

  190. Hu J, Shen H, Jiang M, Gong H, Xiao H, Liu Z, Sun G, Zu X. A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo. Nanomaterials. 2019;9(3):641. https://doi.org/10.3390/nano9030461.

    Article  CAS  Google Scholar 

  191. Liu J, Xu J, Sleiman S, Chen X, Zhu S, Cheng H, Huot J. Microstructure and hydrogen storage properties of Ti–V–Cr based BCC-type high entropy alloys. Int J Hydrog Energy. 2021;46(56):28709. https://doi.org/10.1016/j.ijhydene.2021.06.137.

    Article  CAS  Google Scholar 

  192. Strozi RB, Leiva DR, Huot J, Botta WJ, Zepon G. An approach to design single BCC Mg-containing high entropy alloys for hydrogen storage applications. Int J Hydrog Energy. 2021;46(50):25555. https://doi.org/10.1016/j.ijhydene.2021.05.087.

    Article  CAS  Google Scholar 

  193. Wang X, Guo W, Fu Y. High-entropy alloys: emerging materials for advanced functional applications. J Mater Chem A. 2021;9(2):663. https://doi.org/10.1039/D0TA09601F.

    Article  CAS  Google Scholar 

  194. Mizuguchi Y, Kasem MR, Matsuda TD. Superconductivity in CuAl2-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater Res Lett. 2020;9(3):141. https://doi.org/10.1080/21663831.2020.1860147.

    Article  CAS  Google Scholar 

  195. Kim G, Lee MH, Yun JH, Rawat P, Jung SG, Choi W, You TS, Kim SJ, Rhyee JS. Strongly correlated and strongly coupled s-wave superconductivity of the high entropy alloy Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 compound. Acta Mater. 2020;186:250. https://doi.org/10.1016/j.actamat.2020.01.007.

    Article  CAS  Google Scholar 

  196. Liu B, Wu J, Cui Y, Zhu Q, Xiao G, Wu S, Cao G, Ren Z. Superconductivity in hexagonal Nb-Mo-Ru-Rh-Pd high-entropy alloys. Scripta Mater. 2020;182:109. https://doi.org/10.1016/j.scriptamat.2020.03.004.

    Article  CAS  Google Scholar 

  197. Law JY, Moreno-Ramírez LM, Díaz-García Á, Martín-Cid A, Kobayashi S, Kawaguchi S, Nakamura T, Franco V. MnFeNiGeSi high-entropy alloy with large magnetocaloric effect. J Alloys Compd. 2021;855:157424. https://doi.org/10.1016/j.jallcom.2020.157424.

    Article  CAS  Google Scholar 

  198. Xue L, Shao L, Luo Q, Shen B. Gd25RE25Co25Al25 (RE = Tb, Dy and Ho) high-entropy glassy alloys with distinct spin-glass behavior and good magnetocaloric effect. J Alloy Compd. 2019;790:633. https://doi.org/10.1016/j.jallcom.2019.03.210.

    Article  CAS  Google Scholar 

  199. Huo J, Wang JQ, Wang WH. Denary high entropy metallic glass with large magnetocaloric effect. J Alloy Compd. 2019;776:202. https://doi.org/10.1016/j.jallcom.2018.10.328.

    Article  CAS  Google Scholar 

  200. Yin H, Huang Y, Daisenberg D, Xue P, Jiang S, Ru W, Jiang S, Bao Y, Bian X, Tong X, Shen H, Sun J. Atomic structure evolution of high entropy metallic glass microwires at cryogenic temperature. Scripta Mater. 2019;163:29. https://doi.org/10.1016/j.scriptamat.2018.12.031.

    Article  CAS  Google Scholar 

  201. Yen C, Ming L, Ming C, Chih C. Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high-entropy shape memory alloy under different aging conditions. Mater Today Adv. 2022;14:100223. https://doi.org/10.1016/j.mtadv.2022.100223.

    Article  CAS  Google Scholar 

  202. Chen CH, Chen YJ. Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Mater. 2019;162:185. https://doi.org/10.1016/j.scriptamat.2018.11.023.

    Article  CAS  Google Scholar 

  203. Yaacoub J, Abuzaid W, Brenne F, Sehitoglu H. Superelasticity of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Mater. 2020;186:43. https://doi.org/10.1016/j.scriptamat.2020.04.017.

    Article  CAS  Google Scholar 

  204. Wang J, Kou Z, Fu S, Wu S, Liu S, Yan M, Ren Z, Wang D, You Z, Lan S, Hahn H, Wang XL, Feng T. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition. J Mater Sci Technol. 2022;115:29. https://doi.org/10.1016/j.jmst.2021.11.025.

    Article  CAS  Google Scholar 

  205. Wang J, Wu S, Fu S, Liu S, Yan M, Lai Q, Lan S, Hahn H, Feng T. Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation. Scripta Mater. 2020;187:335. https://doi.org/10.1016/j.scriptamat.2020.06.042.

    Article  CAS  Google Scholar 

  206. Zhang J, Yu Q, Wang Q, Li J, Zhang Z, Wang T, Shuang S, Fang Q, Zeng Q, Yang Y. Strong yet ductile high entropy alloy derived nanostructured cermet. Nano Lett. 2022;22(18):7370. https://doi.org/10.1021/acs.nanolett.2c02097.

    Article  CAS  Google Scholar 

  207. Qiu X. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J Alloy Compd. 2018;735:359. https://doi.org/10.1016/j.jallcom.2017.11.158.

    Article  CAS  Google Scholar 

  208. Jin G, Cai Z, Guan Y, Cui X, Liu Z, Li Y, Dong M, Zhang D. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl Surf Sci. 2018;445:113. https://doi.org/10.1016/j.apsusc.2018.03.135.

    Article  CAS  Google Scholar 

  209. Mu YK, Jia YD, Xu L, Jia YF, Tan XH, Yi J, Wang G, Liaw PK. Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying. Mater Res Lett. 2019;7(8):312. https://doi.org/10.1080/21663831.2019.1604443.

    Article  CAS  Google Scholar 

  210. Tunes MA, Vishnyakov VM. Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin films. Materials Design. 2019;170:107692. https://doi.org/10.1016/j.matdes.2019.107692.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U1904215), the Natural Science Foundation of Jiangsu Province (No. BK20200044), and Changjiang Scholars Program of the Ministry of Education (No. Q2018270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Ethics declarations

Conflict of interests

Huan Pang is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YB., Zhang, GX., Yang, FY. et al. Synthesis methods and applications of high entropy nanoparticles. Rare Met. 42, 3212–3245 (2023). https://doi.org/10.1007/s12598-023-02460-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02460-4

Keywords

Navigation