Skip to main content
Log in

Constructing oxygen deficiency-rich V2O3@PEDOT cathode for high-performance aqueous zinc-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries (AZIBs) have attracted widespread attention due to the advantages of high safety and environmental friendliness. Although V2O3 is a promising cathode, the strong electrostatic interaction between Zn2+ and V2O3 crystal, and the sluggish reaction kinetics still limit their application in AZIBs. Herein, the oxygen defects rich V2O3 with conducive poly (3,4-ethylenedioxythiophene) (PEDOT) shell (V2O3-Od@PEDOT) was fabricated for AZIBs by combining the sulfur-assisted thermal reduction and in-situ polymerization method. The introduced oxygen vacancies of V2O3–Od@PEDOT weaken the electrostatic interaction between Zn2+ and the host material, improving the interfacial electron transport, while the PEDOT coating enhances the structural stability and conductivity of V2O3, thus accelerating the reaction kinetics. Based on the advantages, V2O3–Od@PEDOT electrode delivers a reversible capacity of 495 mAh·g−1 at 0.1 A·g−1, good rate capability (189 mAh·g−1 at 8.0 A·g−1), and an impressive cycling stability with 90.1% capacity retention over 1000 cycles at 8.0 A·g−1. The strategy may provide a path for exploiting the other materials for high performance AZIBs.

Graphic abstract

摘要

水系锌离子电池(AZIBs)因其安全性高、环境友好等优点而受到广泛关注。V2O3作为一种很有前途的正极材料, 由于Zn2+与V2O3之间的强静电相互作用, 导致离子反应动力学缓慢, 限制了其在锌离子电池中的应用。本研究通过硫辅助热还原和原位聚合相结合的方法, 制备了聚(3,4-乙烯二氧噻吩)包覆的富含氧缺陷的V2O3/PEDOT(V2O3-Od@PEDOT)复合材料。V2O3-Od@PEDOT中引入的氧缺陷有效削弱了Zn2+与宿主材料之间的静电相互作用, 改善了界面电子转移。同时, PEDOT包覆层有效地增强了V2O3的结构稳定性和导电性, 从而进一步加快了反应动力学。基于以上优点, V2O3-Od@PEDOT电极在0.1 A·g-1电流密度下具有495 mAh·g-1的高可逆容量, 良好的倍率性能(8.0 A·g-1条件下容量为189 mAh·g-1), 以及优异的循环稳定性能, 在8.0 A·g-1的电流密度下经过1000次循环后容量保留率为90.1%。该策略为开发高性能锌离子电池的电极材料提供了新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, Zhang ZCY, Huang M, Feng JH, Xiong SL, Xi BJ. In situ electrochemically activated vanadium oxide cathode for advanced aqueous Zn-ion batteries. Nano Lett. 2022;22(1):119. https://doi.org/10.1021/acs.nanolett.1c03409.

    Article  CAS  Google Scholar 

  2. Bai XT, Hu YC, Zhuang WD. Research progress on recovery and regeneration of lithium iron phosphate in spent power batteries. Chin J Rare Met. 2022;46(2):254. https://doi.org/10.13373/j.cnki.cjrm.XY20040028.

    Article  Google Scholar 

  3. Gan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Article  Google Scholar 

  4. Park JS, Yang S, Kang YC. Boosting the electrochemical performance of V2O3 by anchoring on carbon nanotube microspheres with macrovoids for ultrafast and long-life aqueous zinc-ion batteries. Small methods. 2021;5(9):2100578. https://doi.org/10.1002/smtd.202100578.

    Article  CAS  Google Scholar 

  5. Yu F, Wang Y, Liu Y, Hui HY, Wang FX, Li JF, Wang Q. An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Met. 2022;41(7):2230. https://doi.org/10.1007/s12598-021-01941-8.

    Article  CAS  Google Scholar 

  6. Luo H, Wang B, Wang F, Yang J, Wu FD, Ning Y, Zhou Y, Wang DL, Liu HK, Dou SX. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano. 2020;14(6):7328. https://doi.org/10.1021/acsnano.0c02658.

    Article  CAS  Google Scholar 

  7. Tan Y, Li SW, Zhao XD, Wang Y, Shen QY, Qu XH, Liu YC, Jiao LF. Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv Energy Mater. 2022;12(19):2104001. https://doi.org/10.1002/aenm.202104001.

    Article  CAS  Google Scholar 

  8. Su ZH, Wang RH, Huang JH, Sun R, Qin ZX, Zhang YF, Fan HS. Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries. Rare Met. 2022;41(8):2844. https://doi.org/10.1007/s12598-022-02026-w.

    Article  CAS  Google Scholar 

  9. Wu ZY, Ye F, Liu Q, Pang RLJ, Liu Y, Jiang L, Tang ZL, Hu LF. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv Energy Mater. 2022;12(23):2200654. https://doi.org/10.1002/aenm.202200654.

    Article  CAS  Google Scholar 

  10. Chen HZ, Rong Y, Yang ZH, Deng L, Wu J. V2O3@amorphous carbon as a cathode of zinc ion batteries with high stability and long cycling life. Ind Eng Chem Res. 2021;60(4):1517. https://doi.org/10.1021/acs.iecr.0c05534.

    Article  CAS  Google Scholar 

  11. Wang X, Zhang Z, Xi BJ, Chen WH, Jia YX, Feng JK, Xiong SL. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano. 2021;15(6):9244. https://doi.org/10.1021/acsnano.1c01389.

    Article  CAS  Google Scholar 

  12. Kim Y, Park Y, Kim M, Lee J, Kim KJ, Choi JW. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat Commun. 2022;13(1):2371. https://doi.org/10.1038/s41467-022-29987-x.

    Article  CAS  Google Scholar 

  13. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2020;40(2):309. https://doi.org/10.1007/s12598-020-01588-x.

    Article  CAS  Google Scholar 

  14. Li SW, Huang C, Gao L, Shen QY, Li P, Qu XH, Jiao LF, Liu YC. Unveiling the “proton lubricant” chemistry in aqueous zinc-MoS2 batteries. Angew Chem Int Ed. 2022;61(50):e202211478. https://doi.org/10.1002/anie.202211478.

    Article  CAS  Google Scholar 

  15. Wu ZY, Lu CJ, Wang YN, Zhang L, Jiang L, Tian WC, Cai CL, Gu QF, Sun ZM, Hu LF. Ultrathin VSe2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode. Small. 2020;16(35):e2000698. https://doi.org/10.1002/smll.202000698.

    Article  CAS  Google Scholar 

  16. Zhu KF, Wei SQ, Shou HW, Shen FR, Chen SM, Zhang PJ, Wang CD, Cao YY, Guo X, Luo M, Zhang HJ, Ye BJ, Wu XJ, He LH, Song L. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat Commun. 2021;12(1):6878. https://doi.org/10.1038/s41467-021-27203-w.

    Article  CAS  Google Scholar 

  17. Liu SD, Kang L, Kim JM, Chun YT, Zhang J, Jun SC. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv Energy Mater. 2020;10(25):2000477. https://doi.org/10.1002/aenm.202000477.

    Article  CAS  Google Scholar 

  18. Chen X, Zhang H, Liu JH, Gao Y, Cao X, Zhan C, Wang Y, Wang S, Chou SL, Dou SX, Cao D. Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 2022;50:21. https://doi.org/10.1016/j.ensm.2022.04.040.

    Article  CAS  Google Scholar 

  19. Zhang N, Jia M, Dong Y, Wang YY, Xu JZ, Liu YC, Jiao LF, Cheng FY. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Funct Mater. 2019;29(10):1807331. https://doi.org/10.1002/adfm.201807331.

    Article  CAS  Google Scholar 

  20. Zhang N, Dong Y, Jia M, Bian X, Wang YY, Qiu MD, Xu JZ, Liu YC, Jiao LF, Cheng FY. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018;3(6):1366. https://doi.org/10.1021/acsenergylett.8b00565.

    Article  CAS  Google Scholar 

  21. Zheng J, Zhan CY, Zhang K, Fu WW, Nie QJ, Zhang M, Shen ZR. Rapid electrochemical activation of V2O3@C cathode for high-performance zinc-ion batteries in water-in-salt electrolyte. Chemsuschem. 2022;15(8):e202200075. https://doi.org/10.1002/cssc.202200075.

    Article  CAS  Google Scholar 

  22. Liu CL, Liu Y, Liu X, Gong Y. Coordination polymer-derived Al3+-doped V2O3/C with rich oxygen vacancies for an advanced aqueous zinc-ion battery with ultrahigh rate capability. Sustain Energy Fuels. 2022;6(8):2020. https://doi.org/10.1039/D2SE00049K.

    Article  CAS  Google Scholar 

  23. Ding YC, Peng YQ, Chen SH, Zhang XX, Li ZQ, Zhu L, Mo LE, Hu LH. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109. https://doi.org/10.1021/acsami.9b13729.

    Article  CAS  Google Scholar 

  24. Ding JW, Zheng HY, Gao HG, Liu QN, Hu Z, Han LF, Wang SW, Wu SD, Fang SM, Chou SL. In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv Energy Mater. 2021;11(26):2100973. https://doi.org/10.1002/aenm.202100973.

    Article  CAS  Google Scholar 

  25. Ren HZ, Zhang J, Wang B, Luo H, Jin F, Zhang TR, Ding A, Cong BW, Wang DL. A V2O3@N-C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance. Rare Met. 2022;41(5):1605. https://doi.org/10.1007/s12598-021-01892-0.

    Article  CAS  Google Scholar 

  26. Gou WW, Kong XZ, Wang YP, Ai YL, Liang SQ, Pan AQ, Cao GZ. Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries. Chem Eng J. 2019;374:545. https://doi.org/10.1016/j.cej.2019.05.144.

    Article  CAS  Google Scholar 

  27. Wang JB, Liu ZW, Yang WJ, Han LJ, Wei MD. A one-step synthesis of porous V2O3@C hollow spheres as a high-performance anode for lithium-ion batteries. Chem Commun. 2018;54:7346. https://doi.org/10.1039/C8CC03875A.

    Article  CAS  Google Scholar 

  28. Liao M, Wang JW, Ye L, Sun H, Wen YZ, Wang C, Sun XM, Wang BJ, Peng HS. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew Chem Int Ed. 2020;59(6):2273. https://doi.org/10.1002/anie.201912203.

    Article  CAS  Google Scholar 

  29. Wu ZY, Lu CJ, Ye F, Zhang L, Jiang L, Liu Q, Dong HL, Sun ZM, Hu LF. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv Funct Mater. 2021;31:2106816. https://doi.org/10.1002/adfm.202106816.

    Article  CAS  Google Scholar 

  30. Cao J, Zhang D, Yue YL, Pakornchote T, Bovornratanaraks T, Sawangphruk M, Zhang XY, Qin JQ. Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Mater Today Energy. 2021;21:100824. https://doi.org/10.1016/j.mtener.2021.100824.

    Article  CAS  Google Scholar 

  31. Xiong T, Zhang YX, Lee WSV, Xue JM. Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: a review. Adv Energy Mater. 2020;10(34):2001769. https://doi.org/10.1002/aenm.202001769.

    Article  CAS  Google Scholar 

  32. Bao MY, Zhang ZCY, An XG, Liu J, Feng JK, Xi BJ, Xiong SL. Introducing Ce ions and oxygen defects into V2O5 nanoribbons for efficient aqueous zinc ion storage. Nano Res. 2023;16:2445. https://doi.org/10.1007/s12274-022-4990-2.

    Article  CAS  Google Scholar 

  33. Li ZQ, Ren YK, Mo L, Liu CF, Hsu K, Ding YC, Zhang XX, Li XL, Hu LH, Ji DH, Cao GZ. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano. 2020;14(5):5581. https://doi.org/10.1021/acsnano.9b09963.

    Article  CAS  Google Scholar 

  34. Bin D, Huo WC, Yuan YB, Huang JH, Liu Y, Zhang YX, Dong F, Wang YG, Xia YY. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem. 2020;6(4):968. https://doi.org/10.1016/j.chempr.2020.02.001.

    Article  CAS  Google Scholar 

  35. Kim J, Lee SH, Park C, Kim HS, Park JH, Chung KY, Ahn H. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: cathode material design for rechargeable aqueous zinc ion batteries. Adv Funct Mater. 2021;31(26):2100005. https://doi.org/10.1002/adfm.202100005.

    Article  CAS  Google Scholar 

  36. Guo CX, Sun K, Ouyang JY, Lu XM. Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem Mater. 2015;27(16):5813. https://doi.org/10.1021/acs.chemmater.5b02512.

    Article  CAS  Google Scholar 

  37. Wu YD, Zhang GH, Xu R, Wang Y, Chou KC. Fabrication of pure V2O3 powders by reducing V2O5 powders with CO-CO2 mixed gases. Ceram Int. 2019;45(2, Part A):2117. https://doi.org/10.1016/j.ceramint.2018.10.117.

    Article  CAS  Google Scholar 

  38. Xu DM, Wang HW, Li FY, Guan ZC, Wang R, He BB, Gong YS, Hu XL. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces. 2019;6(2):1801506. https://doi.org/10.1002/admi.201801506.

    Article  CAS  Google Scholar 

  39. Zhang Y, Du YH, Song BX, Wang Z, Wang XY, Wan F, Ma XK. Manganese-ions and polyaniline co-intercalation into vanadium oxide for stable zinc-ion batteries. J Power Sour. 2022;545:231920. https://doi.org/10.1016/j.jpowsour.2022.231920.

    Article  CAS  Google Scholar 

  40. Zhang ZCY, Xi BJ, Wang X, Ma XJ, Chen WH, Feng JK, Xiong SL. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv Funct Mater. 2021;31(34):2103070. https://doi.org/10.1002/adfm.202103070.

    Article  CAS  Google Scholar 

  41. Du YH, Wang XY, Sun JC. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021;14(3):754. https://doi.org/10.1007/s12274-020-3109-x.

    Article  CAS  Google Scholar 

  42. Li SL, Wei XJ, Wu CC, Zhang BK, Wu SX, Lin Z. Constructing three-dimensional structured V2O5/conductive polymer composite with fast ion/electron transfer kinetics for aqueous zinc-ion battery. ACS Appl Energy Mater. 2021;4(4):4208. https://doi.org/10.1021/acsaem.1c00573.

    Article  CAS  Google Scholar 

  43. Wu DX, Zhang WC, Feng YZ, Ma JM. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618. https://doi.org/10.1039/C9TA12859J.

    Article  CAS  Google Scholar 

  44. Dai YH, Liao XB, Yu RH, Li JH, Li JT, Tan SS, He P, An QY, Wei QL, Chen LN, Hong XF, Zhao KN, Ren Y, Wu JS, Zhao Y, Mai LQ. Quicker and more Zn2+ storage predominantly from the interface. Adv Mater. 2021;33(26):2100359. https://doi.org/10.1002/adma.202100359.

    Article  CAS  Google Scholar 

  45. Hu K, Jin DQ, Zhang Y, Ke LW, Shang H, Yan Y, Lin HJ, Rui K, Zhu JX. Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries. J Energy Chem. 2021;61:594. https://doi.org/10.1016/j.jechem.2021.02.014.

    Article  CAS  Google Scholar 

  46. Pang Q, He W, Yu XY, Yang SY, Zhao HN, Fu Y, Xing MM, Tian Y, Luo XX, Wei YJ. Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries. Appl Surf Sci. 2021;538:148043. https://doi.org/10.1016/j.apsusc.2020.148043.

    Article  CAS  Google Scholar 

  47. Zhao DY, Zhu QC, Li XH, Dun MH, Wang Y, Huang XT. Oxygen vacancies of commercial V2O5 induced by mechanical force to enhance the diffusion of zinc ions in aqueous zinc battery. Batteries Supercaps. 2022;5(4):e202100341. https://doi.org/10.1002/batt.202100341.

    Article  CAS  Google Scholar 

  48. Liu Y, Liu Y, Wu X, Cho YR. Enhanced electrochemical performance of Zn/VOx batteries by a carbon-encapsulation strategy. ACS Appl Mater Interfaces. 2022;14(9):11654. https://doi.org/10.1021/acsami.2c00001.

    Article  CAS  Google Scholar 

  49. Deng L, Chen HZ, Wu J, Yang ZH, Rong Y, Fu ZM. V2O3 as cathode of zinc ion battery with high stability and long cycling life. Ionics. 2021;27(8):3393. https://doi.org/10.1007/s11581-021-04121-x.

    Article  CAS  Google Scholar 

  50. Liu XD, Wang ZQ, Niu YL, Liu CY, Chen HM, Ren XZ, Wang MS, Lau WM, Zhou D. Scalable synthesis of novel V2O3/carbon composite as advanced cathode material for aqueous zinc-ion batteries. Ceram Int. 2022;48(11):15594. https://doi.org/10.1016/j.ceramint.2022.02.093.

    Article  CAS  Google Scholar 

  51. Chao DL, Xia XH, Liu JL, Fan ZX, Ng CF, Lin JY, Zhang H, Shen ZX, Fan HJ. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater. 2014;26(33):5794. https://doi.org/10.1002/adma.201400719.

    Article  CAS  Google Scholar 

  52. Wang X, Xi BJ, Ma XJ, Feng ZY, Jia YX, Feng JK, Qian YT, Xiong SL. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 2020;20(4):2899. https://doi.org/10.1021/acs.nanolett.0c00732.

    Article  CAS  Google Scholar 

  53. He W, Fan ZX, Huang ZQ, Liu XY, Qian JC, Ni M, Zhang PG, Hu LF, Sun ZM. A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance. J Mater Chem A. 2022;10(36):18962. https://doi.org/10.1039/D2TA03145K.

    Article  CAS  Google Scholar 

  54. Li JW, Hong NY, Luo NJ, Dong HB, Kang LQ, Peng ZJ, Jia GF, Chai GL, Wang M, He GJ. In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries. Sci China Mater. 2022;65(5):1165. https://doi.org/10.1007/s40843-021-1893-2.

    Article  CAS  Google Scholar 

  55. Feng ZY, Zhang YF, Zhao YF, Sun JJ, Liu YY, Jiang HM, Cui M, Hu T, Meng CG. Dual intercalation of inorganics-organics for synergistically tuning the layer spacing of V2O5nH2O to boost Zn2+ storage for aqueous zinc-ion batteries. Nanoscale. 2022;14(24):8776. https://doi.org/10.1039/D2NR02122F.

    Article  CAS  Google Scholar 

  56. Tian M, Liu CF, Zheng JQ, Jia XX, Jahrman EP, Seidler GT, Long DH, Atif M, Alsalhi M, Cao GZ. Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 2020;29:9. https://doi.org/10.1016/j.ensm.2020.03.024.

    Article  Google Scholar 

  57. Sun W, Wang F, Hou S, Yang CY, Fan XL, Ma ZH, Gao T, Han FD, Hu RZ, Zhu M, Wang CS. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc. 2017;139(29):9775. https://doi.org/10.1021/jacs.7b04471.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22165028) and the Nature Science Foundation of Gansu Province (No. 20JR10RA108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Fei Sun.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2927 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, DF., Wang, ZJ., Tian, T. et al. Constructing oxygen deficiency-rich V2O3@PEDOT cathode for high-performance aqueous zinc-ion batteries. Rare Met. 43, 635–646 (2024). https://doi.org/10.1007/s12598-023-02434-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02434-6

Keywords

Navigation