Skip to main content
Log in

Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silver vanadate (Ag0.33V2O5) nanorods were successfully synthesized by the pre-intercalation of Ag+ into the interlayer of V2O5 through a sol–gel method, which presented a favorable electrochemical performance of high capacity, rate capacity, and cycle stability. Specifically, Ag0.33V2O5 electrode presented a high capacity of about 311 mAh·g−1 at the current density of 0.1 A·g−1. It also delivered long-term cycling stability (144 mAh·g−1 after 500 cycles at 2 A·g−1). The reasons for the superior electrochemical performance were the pre-intercalation Ag+ extended interlayer distance, and the introduction of elemental silver improved conductivity during charge/discharge. Additionally, the Zn2+ storage mechanism was revealed by various characteristic measurements. The prepared Ag0.33V2O5 nanorods from the sol–gel method were demonstrated as a promising cathode material for aqueous Zn2+ batteries.

Graphical abstract

摘要

通过溶胶-凝胶法将银离子预嵌入到V2O5的层间中, 成功地制备了钒酸银(Ag0.33V2O5)纳米棒。用于水系锌离子电极材料时钒酸银纳米棒具有良好的电化学性能, 包括高容量、高倍率性能和循环稳定性, 在0.1 A·g−1的电流密度下, Ag0.33V2O5电极的比容量约为311 mAh·g−1。这是由于预插入银离子扩大了层间距离, 同时银的引入提高了充放电过程中的电导率, 因此赋予材料优异的电化学性能。同时它还具有长循环稳定性(在2 A·g−1下循环500次后比容量为144 mAh·g−1)。此外, 通过各种表征揭示了锌离子的储存机理, 因此用溶胶-凝胶法制备的Ag0.33V2O5纳米棒是一种很有应用前景的水系锌离子电池正极材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309.

    Article  CAS  Google Scholar 

  2. Li ZY, Sun R, Qin ZX, Liu XL, Wang CH, Fan HS, Zhang YF, Lu SJ. Recent progress of nanostructured metal chalcogenides and their carbon-based hybrids for advanced potassium battery anodes. Mater Chem Front. 2021;5(12):4401.

  3. Yang X, Wang YY, Hou BH, Liang HJ, Zhao XX, Fan H, Wang G, Wu XL. Nano-SnO decorated carbon cloth as flexible, self-supporting and additive-free anode for sodium/lithium-ion batteries. Acta Metall Sin (Engl Lett). 2020;34(3):390.

  4. Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan H, Zhang T, Lü C, Wu XL. N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater. 2018;28(47):1805444.

    Article  Google Scholar 

  5. Fan H, Yu H, Zhang Y, Guo J, Wang Z, Wang H, Zhao N, Zheng Y, Du C, Dai Z, Yan Q, Xu J. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2 @C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 2018;10:48.

  6. Li X, Liang H, Liu X, Sun R, Qin Z, Fan H, Zhang Y. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J. 2021;425:130657.

    Article  CAS  Google Scholar 

  7. Zhang T, Mao Z, Shi X, Jin J, He B, Wang R, Gong Y, Wang H. Tissue-derived carbon microbelt paper: a high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors. Energy Environ Sci. 2022. https://doi.org/10.1039/D1EE03214C.

  8. Li Z, Peng Z, Sun R, Qin Z, Liu X, Wang C, Fan H, Lu S. Super Na+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co0.5Ni0.5Se2@NC nanosheets into cross-stacked architecture. Chin J Chem. 2021;39(9):2599.

  9. Hao Y, Zhang S, Tao P, Shen T, Huang Z, Yan J, Chen Y. Pillaring effect of K ion anchoring for stable V2O5-based zinc-ion battery cathodes. Chemnanomat. 2020;6(5):797.

    Article  CAS  Google Scholar 

  10. Liu L, Wu YC, Rozier P, Taberna PL, Simon P. Ultrafast synthesis of calcium vanadate for superior aqueous calcium-ion battery. Research. 2019;2019:6585686.

  11. Alfaruqi MH, Mathew V, Gim J, Kim S, Song J, Baboo JP, Choi SH, Kim J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater. 2015;27(10):3609.

    Article  CAS  Google Scholar 

  12. Zeng X, Hao J, Wang Z, Mao J, Guo Z. Recent progress and perspectives on aqueous zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019;20:410.

    Article  Google Scholar 

  13. Xu L, Zhang Y, Zheng J, Jiang H, Hu T, Meng C. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater Today Energy. 2020;18:100509.

    Article  CAS  Google Scholar 

  14. Li Y, Wang S, Salvador JR, Wu J, Liu B, Yang W, Yang J, Zhang W, Liu J, Yang J. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem Mater. 2019;31(6):2036.

    Article  CAS  Google Scholar 

  15. Liu M, Zhao Q, Liu H, Yang J, Chen X, Yang L, Cui Y, Huang W, Zhao W, Song A, Wang Y, Ding S, Song Y, Qian G, Chen H, Pan F. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy. 2019;64:103942.

    Article  CAS  Google Scholar 

  16. Wang C, Zeng Y, Xiao X, Wu S, Zhong G, Xu K, Wei Z, Su W, Lu X. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem. 2020;43:182.

    Article  Google Scholar 

  17. Liu Y, Wu X. Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.08.081.

    Article  Google Scholar 

  18. Liu Z, Pulletikurthi G, Endres F. A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl Mater Interfaces. 2016;8(19):12158.

    Article  CAS  Google Scholar 

  19. Liu Z, Bertram P, Endres F. Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. J Solid State Electrochem. 2017;21(7):2021.

    Article  CAS  Google Scholar 

  20. He P, Zhang G, Liao X, Yan M, Xu X, An Q, Liu J, Mai L. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater. 2018;8(10):1702463.

    Article  Google Scholar 

  21. Zhang W, Tang C, Lan B, Chen L, Tang W, Zuo C, Dong S, An Q, Luo P. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J Alloys Compd. 2020;819:152971.

    Article  CAS  Google Scholar 

  22. Deng W, Zhou Z, Li Y, Zhang M, Yuan X, Hu J, Li Z, Li C, Li R. High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano. 2020; 15776.

  23. Liu Y, Hu P, Liu H, Wu X, Zhi C. Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Mater Today Energy. 2020;17:100431.

    Article  Google Scholar 

  24. Sun R, Qin Z, Liu X, Wang C, Lu S, Zhang Y, Fan H. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries. ACS Sustain Chem Eng. 2021;9:11769.

    Article  CAS  Google Scholar 

  25. Liu Y, Liu Y, Yamauchi Y, Alothman ZA, Kaneti YV, Wu X. Enhanced zinc ion storage capability of V2O5 electrode materials with hollow interior cavities. Batteries Supercaps. 2021;4(12):1867.

    Article  CAS  Google Scholar 

  26. Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M. Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem Mater. 2018;30(11):3874.

    Article  CAS  Google Scholar 

  27. Su G, Chen S, Dong H, Cheng Y, Liu Q, Wei H, Ang EH, Geng H, Li CC. Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale. 2021;13(4):2399.

    Article  CAS  Google Scholar 

  28. Ma Y, Zhou H, Zhang S, Gu S, Cao X, Bao S, Yao H, Ji S, Jin P. Long straczekite delta-Ca0.24V2O5 H2O nanorods and derived beta-Ca0.24V2O5 nanorods as novel host materials for lithium storage with excellent cycling stability. Chemistry. 2017;23(53):13221.

  29. Du M, Zhang F, Zhang X, Dong W, Sang Y, Wang J, Liu H, Wang S. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Sci China: Chem. 2020;63(12):1767.

    Article  CAS  Google Scholar 

  30. Zhang N, Jia M, Dong Y, Wang Y, Xu J, Liu Y, Jiao L, Cheng F. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Funct Mater. 2019;29(10):1807331.

    Article  Google Scholar 

  31. Yang Y, Tang Y, Liang S, Wu Z, Fang G, Cao X, Wang C, Lin T, Pan A, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617.

    Article  CAS  Google Scholar 

  32. Shan L, Yang Y, Zhang W, Chen H, Fang G, Zhou J, Liang S. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019;18:10.

    Article  Google Scholar 

  33. Liu H, Wang JG, Sun H, Li Y, Yang J, Wei C, Kang F. Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. J Colloid Interface Sci. 2020;560:659.

    Article  CAS  Google Scholar 

  34. Liu X, Wang M, Qin B, Zhang Y, Liu Z, Fan H. 2D–2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chem Eng J. 2022;431:133796.

  35. Li Z, Sun R, Qin Z, Liu X, Wang C, Lu S, Zhang Y, Fan H. Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusion kinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater Chem Front. 2021;5(20):7540.

  36. Zhu HY, Li ZY, Xu F, Qin ZX, Sun R, Wang CH, Lu SJ, Zhang YF, Fan HS. Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery. J Colloid Interface Sci. 2022;611:718.

    Article  CAS  Google Scholar 

  37. Liu F, Chen Z, Fang G, Wang Z, Cai Y, Tang B, Zhou J, Liang S. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019;11(1):1.

    Article  Google Scholar 

  38. Qin Z, Liu X, Huang Z, Sun R, Li Z, Fan H, Lu S. Electrochemical and pseudocapacitive analysis of rodlike MoO2@MoSe2@NC heterostructures for highperformance lithium ion batteries. Acta Metall Sin (Engl Lett). 2020;34(3):425.

  39. Sun R, Qin ZX, Li ZY, Fan HS, Lu SJ. Binary zinc–cobalt metal–organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans. 2020;49(40):14237.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52101243), the Natural Science Foundation of Guangdong Province (No. 2020A1515010886) and the Science and Technology Planning Project of Guangzhou (No. 202102010373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Fei Zhang or Hao-Sen Fan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, ZH., Wang, RH., Huang, JH. et al. Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries. Rare Met. 41, 2844–2852 (2022). https://doi.org/10.1007/s12598-022-02026-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02026-w

Keywords

Navigation