Skip to main content
Log in

2D–3D dual carbon layer confined ultrasmall VN nanoparticles for improving lithium-ion storage in hybrid capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium-ion capacitors (LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitride (VN) with a high theoretical specific capacity (~ 1200 mAh·g−1) is a better pseudocapacitive anode to match the response of cathode in LICs. However, the insertion/extraction of Li-ions in VN’s operation results in significant volume expansion. Herein, the VN/N-rGO-5 composite that three-dimentional (3D) dicyandiamide-derived-carbon (DDC) tightly wrapped VN quantum dots (VN QDTs) on two-dimentional (2D) reduced graphene oxid (rGO) was prepared by a facile strategy. The VN QDTs can reduce ion diffusion length and improve charge transfer kinetics. The 2D rGO as a template provides support for nanoparticle dispersion and improves electrical conductivity. The 3D DDC tightly encapsulated with VN QDTs mitigates agglomeration of VN particles as well as volume expansion. Correspondingly, the LICs with VN/N-rGO-5 composite as anode and activated carbon (AC) as cathode were fabricated, which exhibits a high energy density and power density. Such strategy provides a perspective for improving the electrochemical properties of LIC anode materials by suppressing volume expansion and enhancing conductivity.

Graphical abstract

摘要

可实现高功率和高能量密度的锂离子电容器(LICs)已引起广泛关注。然而,正极和负极之间的动力学不平衡会阻碍LICs的应用。氮化钒(VN)具有较高的理论比容量(约1200 mAh·g-1),是一种具有良好赝电容性能的负极,可以与LIC中的正极反应相匹配。然而,VN在锂离子插入/抽出过程中伴随着严重的体积膨胀。在此,通过简单的一步热处理策略,制备了在二维还原氧化石墨烯(rGO)上负载了被三维双氰胺衍生碳(DDC)紧密包裹的VN量子点(VN QDTs)复合材料(VN/N-rGO-5)。VN QDTs可以减少离子扩散长度并改善电荷转移动力学。作为模板的二维rGO为纳米粒子的分散提供了保证,并提高了导电性。三维DDC紧密包裹VN,减轻了VN颗粒的聚集和体积膨胀。相应地,组装了以VN/N-rGO-5复合材料为负极、以活性炭(AC)为正极的LIC,其展现了高能量密度和功率密度。就缓解体积膨胀和增强导电性而言,这种策略为提高LIC负极材料的电化学性能提供了一个新方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu C, Qiu XY, Liu Y, He XJ, Chen ZQ, Liu MD. Research status and prospects of physical separation technology of spent lithium-ion batteries. Chin J Rare Met. 2021;45(4):493. https://doi.org/10.13373/j.cnki.cjrm.XY19080040.

    Article  Google Scholar 

  2. Du YH, Liu XY, Wang XY, Sun JC, Lu QQ, Wang JZ, Omar A, Mikhailova D. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 2022;41(2):415. https://doi.org/10.1007/s12598-021-01777-2.

    Article  CAS  Google Scholar 

  3. Yang L, Cao X, Wang X, Wang Q, Jiao L. Regulative electronic redistribution of CoTe2/CoP heterointerfaces for accelerating water splitting. Appl Catal B: Environ. 2023;329:122551. https://doi.org/10.1016/j.apcatb.2023.122551.

    Article  CAS  Google Scholar 

  4. Han CP, Li HF, Shi RY, Xu L, Li JQ, Kang FY, Li BH. Nanostructured anode materials for non-aqueous lithium ion hybrid capacitors. Energy Environ Mater. 2018;1(2):75. https://doi.org/10.1002/eem2.12009.

    Article  CAS  Google Scholar 

  5. Shi RY, Han CP, Li HF, Xu L, Zhang TF, Li JQ, Lin ZQ, Wong CP, Kang FY, Li BH. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J Mater Chem A. 2018;6(35):17057. https://doi.org/10.1039/C8TA05853A.

    Article  CAS  Google Scholar 

  6. Wang WL, Feng M, Hu EZ, Hu ZW, Fan C, Li HF, Wang P, Wang XJ, Liu ZM. Interlayer and intralayer co-modified flexible V2CTX MXene@SWCNT films for high-power Li-ion capacitors. J Energy Chem. 2022. https://doi.org/10.1016/j.jechem.2022.08.034.

    Article  Google Scholar 

  7. Jiang X, Lu W, Yu XD, Song SY, Xing Y. Fabrication of a vanadium nitride/N-doped carbon hollow nanosphere composite as an efficient electrode material for asymmetric supercapacitors. Nanoscale Adv. 2020;2(9):3865. https://doi.org/10.1039/D0NA00288G.

    Article  CAS  Google Scholar 

  8. Li CC, Zhu L, Qi SY, Ge WN, Ma WZ, Zhao Y, Huang RZ, Xu LQ, Qian YT. Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium nitride@N-doped carbon/graphene architecture. ACS Appl Mater Interfaces. 2020;12(44):49607. https://doi.org/10.1039/D0NA00288G.

    Article  CAS  Google Scholar 

  9. Li F, Zhang MJ, Chen WY, Cai X, Rao HS, Chang J, Fang YP, Zhong XH, Yang Y, Yang ZH, Yu XY. Vanadium nitride quantum dots/holey graphene matrix boosting adsorption and conversion reaction kinetics for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(26):30746. https://doi.org/10.1021/acsami.1c08113.

    Article  CAS  Google Scholar 

  10. Peng X, Li W, Wang L, Hu LS, Jin WH, Gao A, Zhang XM, Huo KF, Chu PK. Lithiation kinetics in high-performance porous vanadium nitride nanosheet anode. Electrochim Acta. 2016;214:201. https://doi.org/10.1016/j.electacta.2016.08.023.

    Article  CAS  Google Scholar 

  11. Peng T, Guo Y, Zhang YG, Wang YB, Zhang DY, Yang Y, Lu Y, Liu XF, Chu PK, Luo YS. Uniform cobalt nanoparticles-decorated biscuit-like VN nanosheets by in situ segregation for Li-ion batteries and oxygen evolution reaction. App Surf Sci. 2021;536:147982. https://doi.org/10.1016/j.apsusc.2020.147982.

    Article  CAS  Google Scholar 

  12. El-Khodary SA, Subburam G, Zou BB, Wang J, Qiu JX, Liu XH, Ng DHL, Wang S, Lian JB. Mesoporous silica anchored on reduced graphene oxide nanocomposite as anode for superior lithium-ion capacitor. Rare Met. 2022;41(2):368. https://doi.org/10.1007/s12598-021-01788-z.

    Article  CAS  Google Scholar 

  13. Liu WJ, Zhang X, Xu YN, Wang L, Li Z, Li C, Wang K, Sun XZ, An YB, Wu ZS, Ma YW. 2D Graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors. Adv Funct Mater. 2022;32(30):2202342. https://doi.org/10.1002/adfm.202202342.

    Article  CAS  Google Scholar 

  14. Xiao ZH, Yu ZQ, Gao ZF, Li BF, Zhang MX, Xu CM. S-doped graphene nano-capsules toward excellent low-temperature performance in Li-ion capacitors. J Power Sour. 2022;535:231404. https://doi.org/10.1016/j.jpowsour.2022.231404.

    Article  CAS  Google Scholar 

  15. Yi S, Wang L, Zhang X, Li C, Liu WJ, Wang K, Sun XZ, Xu YN, Yang ZX, Cao Y, Sun J, Ma YW. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull. 2021;66(9):914. https://doi.org/10.1016/j.scib.2020.12.026.

    Article  CAS  Google Scholar 

  16. Wang RT, Lang JW, Zhang P, Lin ZY, Yan XB. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Funct Mater. 2015;25(15):2270. https://doi.org/10.1002/adfm.201404472.

    Article  CAS  Google Scholar 

  17. Liu RJ, Yang LX, Wang WJ, Liu HJ, Zeng CL. Molten salt disproportionation synthesis of nanosized VN wrapped onto carbon fibers with enhanced lithium-ion storage capabilities. J Alloys Compd. 2022;919:165796. https://doi.org/10.1016/j.jallcom.2022.165796.

    Article  CAS  Google Scholar 

  18. Fu T, Li PC, He HC, Ding SS, Cai Y, Zhang M. Electrospinning with sulfur powder to prepare CNF@G-Fe9S10 nanofibers with controllable particles distribution for stable potassium-ion storage. Rare Met. 2022;42(1):111. https://doi.org/10.1007/s12598-022-02103-0.

    Article  CAS  Google Scholar 

  19. Wang PF, Dai X, Xu P, Hu SJ, Xiong XY, Zou KY, Guo SW, Sun JJ, Zhang CF, Liu YN, Zhou TF, Chen YZ. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries. eScience. 2022;3(1):100088. https://doi.org/10.1016/j.esci.2022.100088.

    Article  Google Scholar 

  20. An YB, Liu TY, Li C, Zhang X, Hu T, Sun XZ, Wang K, Wang CD, Ma YW. A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. J Mater Chem A. 2021;9(28):15654. https://doi.org/10.1039/D1TA03933D.

    Article  CAS  Google Scholar 

  21. Jiang JM, Yuan JR, Nie P, Zhu Q, Chen CL, He WJ, Zhang TF, Dou H, Zhang XG. Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. J Mater Chem A. 2020;8(7):3956. https://doi.org/10.1039/C9TA08676E.

    Article  CAS  Google Scholar 

  22. Yang L, Qin HY, Dong ZH, Wang TZ, Wang GC, Jiao LF. Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis. Small. 2021;17(31):2102027. https://doi.org/10.1002/smll.202102027.

    Article  CAS  Google Scholar 

  23. Liu XQ, Li GS, Wu JJ, Meng LS, Zhang D, Zhang X, Li L. VN nanocrystals on N, S co-doped carbon framework: topochemical self-nitridation and superior performance for lithium-ion battery. Electrochim Acta. 2022;429:140982. https://doi.org/10.1016/j.electacta.2022.140982.

    Article  CAS  Google Scholar 

  24. Zhang HY, Hu RZ, Feng SR, Lin ZQ, Zhu M. SiO–Sn2Fe@C composites with uniformly distributed Sn2Fe nanoparticles as fast-charging anodes for lithium-ion batteries. eScience. 2022;3(1):100080. https://doi.org/10.1016/j.esci.2022.10.006.

    Article  Google Scholar 

  25. Zhang JH, Chen ZY, Xu TZ, Ai LF, Xu YH, Zhang XG, Shen LF. Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors. Rare Met. 2022;41(7):2460. https://doi.org/10.1007/s12598-021-01950-7.

    Article  CAS  Google Scholar 

  26. Zeng FY, Lu T, He WX, Chu SL, Qu YH, Pan Y. In-situ carbon encapsulation of ultrafine VN in yolk-shell nanospheres for highly reversible sodium storage. Carbon. 2021;175:289. https://doi.org/10.1016/j.carbon.2021.01.025.

    Article  CAS  Google Scholar 

  27. Ma LB, Yuan H, Zhang WJ, Zhu GY, Wang YR, Hu Y, Zhao PY, Chen RP, Chen T, Liu J, Hu Z, Jin Z. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries. Nano Lett. 2017;17(12):7839. https://doi.org/10.1021/acs.nanolett.7b04084.

    Article  CAS  Google Scholar 

  28. Meng XP, Li ZL, Cheng ZB, Li PY, Wang RH, Li XJ. Ammonia-free fabrication of ultrafine vanadium nitride nanoparticles as interfacial mediators for promoting electrochemical behaviors of lithium-sulfur batteries. Nanoscale. 2021;13(10):5292. https://doi.org/10.1039/D1NR00176K.

    Article  CAS  Google Scholar 

  29. Wei BB, Shang CQ, Pan XY, Chen ZH, Shui LL, Wang X, Zhou GF. Lotus root-like nitrogen-doped carbon nanofiber structure assembled with VN catalysts as a multifunctional host for superior lithium-sulfur batteries. Nanomaterials (Basel). 2019;9(12):1724. https://doi.org/10.3390/nano9121724.

    Article  CAS  Google Scholar 

  30. Wu HY, Yu Q, Lao CY, Qin ML, Wang W, Liu ZW, Man C, Wang LY, Jia BR, Qu XH. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 2019;18:43. https://doi.org/10.1016/j.ensm.2018.09.025.

    Article  Google Scholar 

  31. Zhang LT, Sun JW, Zhao HG, Sun YT, Dai LM, Yao FL, Fu YS, Zhu JW. Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor. J Power Sour. 2020;475:228679. https://doi.org/10.1016/j.jpowsour.2020.228679.

    Article  CAS  Google Scholar 

  32. Yu SL, Sun YJ, Song LX, Cao X, Chen L, An XT, Liu XH, Cai WL, Yao T, Song YZ, Zhang W. Vanadium atom modulated electrocatalyst for accelerated Li-S chemistry. Nano Energy. 2021;89:106414. https://doi.org/10.1016/j.nanoen.2021.106414.

    Article  CAS  Google Scholar 

  33. Wang P, Gao MX, Pan HG, Zhang JL, Liang C, Wang JH, Zhou P, Liu YF. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. J Power Sour. 2013;239:466. https://doi.org/10.1016/j.jpowsour.2013.03.073.

    Article  CAS  Google Scholar 

  34. Feng M, Wang WL, Hu ZW, Fan C, Zhao XR, Wang P, Li HF, Yang L, Wang XJ, Liu ZM. Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors. Sci China Mater. 2022. https://doi.org/10.1007/s40843-022-2268-9.

    Article  Google Scholar 

  35. Kundu D, Krumeich F, Fotedar R, Nesper R. A nanocrystalline nitride as an insertion anode for Li-ion batteries. J Power Sour. 2015;278:608. https://doi.org/10.1016/j.jpowsour.2014.12.087.

    Article  CAS  Google Scholar 

  36. Aravindan V, Cheah YL, Mak WF, Wee G, Chowdari B, Madhavi S. Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network. ChemPlusChem. 2012;77(7):570. https://doi.org/10.1002/cplu.201200023.

    Article  CAS  Google Scholar 

  37. Wang HQ, Wang PJ, Gan W, Ci LJ, Li DP, Yuan QH. VS4 nanoarrays pillared Ti3C2Tx with enlarged interlayer spacing as anode for advanced lithium/sodium ion battery and hybrid capacitor. J Power Sour. 2022;534:231412. https://doi.org/10.1016/j.jpowsour.2022.231412.

    Article  CAS  Google Scholar 

  38. Leng K, Zhang F, Zhang L, Zhang TF, Wu YP, Lu YH, Huang Y, Chen YS. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013;6(8):581. https://doi.org/10.1007/s12274-013-0334-6.

    Article  CAS  Google Scholar 

  39. Kong NZ, Jia MZ, Yang C, Lan JL, Yu YH, Yang XP. Encapsulating V2O3 nanoparticles in carbon nanofibers with internal void spaces for a self-supported anode material in superior lithium-ion capacitors. ACS Sustain Chem Eng. 2019;7(24):19483. https://doi.org/10.1021/acssuschemeng.9b04419.

    Article  CAS  Google Scholar 

  40. Chao J, Yang LH, Zhang HY, Liu JW, Hu RZ, Zhu M. Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J Power Sour. 2020;450:227680. https://doi.org/10.1016/j.jpowsour.2019.227680.

    Article  CAS  Google Scholar 

  41. Liu C, Wang BW, Xu LQ, Zou KY, Deng WT, Hou HS, Zou GQ, Ji XB. Novel nonstoichiometric niobium oxide anode material with rich oxygen vacancies for advanced lithium-ion capacitors. ACS Appl Mater Interfaces. 2023;15(4):5387. https://doi.org/10.1021/acsami.2c22206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22005167 and 21905152), Shandong Provincial Natural Science Foundation of China (Nos. ZR2020QB125, ZR2020MB045 and ZR2022QE003), China Postdoctoral Science Foundation (Nos. 2021M693256, 2021T140687 and 2022M713249), Qingdao Postdoctoral Applied Research Project, Taishan Scholar Project of Shandong Province of China (No. tsqn202211160) and the Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Fang Li, Xiao-Jun Wang or Zhi-Ming Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZW., Li, HF., Wang, P. et al. 2D–3D dual carbon layer confined ultrasmall VN nanoparticles for improving lithium-ion storage in hybrid capacitors. Rare Met. 43, 65–75 (2024). https://doi.org/10.1007/s12598-023-02432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02432-8

Keywords

Navigation