Skip to main content
Log in

A Li3Bi/LiF interfacial layer enabling highly stable lithium metal anode

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium metal anode is considered the alternative to graphite anode due to its ultra-high theoretical capacity of 3860 mAh·g−1. However, serious Li dendrite growth and drastic electrolyte side reactions restrain the commercial application of Li metal anode. In this work, a Li3Bi/LiF interfacial layer is constructed on the surface of the Li metal anode by a spontaneous substitution reaction. The composite interfacial layer possesses excellent ionic conductivity, high mechanical strength, and great electrolyte wettability, which ensures fast Li-ion transfer and uniform Li deposition of the Li3Bi/LiF@Li anode. Impressively, the Li3Bi/LiF@Li symmetric cell provides a cycle life of more than 400 h with only 73 mV voltage polarization at 10 mA·cm−2. By pairing with commercial NCM622 cathode, the Li3Bi/LiF@Li full cell exhibits a long cycle at a rate of 2 C.

Graphical Abstract

摘要

锂金属负极由于其3860 mAh·g-1的高理论比容量而被认为是石墨负极的替代品。然而,严重的锂枝晶生长和剧烈的电解液副反应限制了锂金属负极的商业应用。在这项工作中,通过自发置换反应在锂金属负极的表面构建了一个Li3Bi/LiF界面层。该复合界面层具有优良的离子传导性、高机械强度和良好的电解液润湿性,从而保证了LiBi/LiF@Li负极的快速锂离子传输和均匀的锂沉积。Li3Bi/LiF@Li对称电池的循环寿命超过400 h,在10 mA·cm-2的情况下,电压极化只有73 mV。通过与商用NCM622正极材料配对,Li3Bi/LiF@Li全电池在2 C的倍率下表现出长时间的循环寿命。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li LJ, Fu LZ, Li M, Wang C, Zhao ZX, Xie SC, Lin HC, Wu XW, Liu HD, Zhang L, Zhang QB, Tan L. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J Energy Chem. 2022;71:588. https://doi.org/10.1016/j.jechem.2022.04.037.

    Article  CAS  Google Scholar 

  2. Zhou Y, Feng SH, Zhu PF, Guo HJ, Yan GC, Li XC, Su MR, Liu YJ, Wang ZX, Wang JX. Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chem Eng J. 2021;415:128998. https://doi.org/10.1016/j.cej.2021.128998.

    Article  CAS  Google Scholar 

  3. Ren J, Ma ZS, Wang YD, Ou JR, Chen TQ, Zheng SY. Microcracks in nickel-rich layered cathode mechanism of generation and coping strategies. Chin J Rare Me. 2022;46(6):736. https://doi.org/10.13373/j.cnki.cjrm.XY22030009.

    Article  Google Scholar 

  4. Liu J, Yuan H, Liu H, Zhao C-Z, Lu Y, Cheng X-B, Huang J-Q, Zhang Q. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater. 2022;12(4):2100748. https://doi.org/10.1002/aenm.202100748.

    Article  CAS  Google Scholar 

  5. Wang G, Liu T, Fu XX, Wu ZP, Liu ML, Xiong XH. Lithiophilic amide-functionalized carbon nanotube skeleton for dendrite-free lithium metal anodes. Chem Eng J. 2021;414:128698. https://doi.org/10.1016/j.cej.2021.128698.

    Article  CAS  Google Scholar 

  6. Yang YX, Zhang CH, Mei ZY, Sun YJ, An Q, Jing Q, Zhao GF, Guo H. Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Res. 2023. https://doi.org/10.1007/s12274-023-5534-0.

    Article  Google Scholar 

  7. Chen C, Liang QW, Chen ZX, Zhu WY, Wang ZJ, Li Y, Wu XW, Xiong XH. Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew Chem Int Ed Engl. 2021;60(51):26718. https://doi.org/10.1002/anie.202110441.

    Article  CAS  Google Scholar 

  8. Tan L, Feng SH, Li XH, Wang ZX, Peng WJ, Liu TC, Yan GC, Li LJ, Wu FX, Wang JX. Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode. Chem Eng J. 2020;394:124848. https://doi.org/10.1016/j.cej.2020.124848.

    Article  CAS  Google Scholar 

  9. Yang SJ, Yao N, Xu XQ, Jiang FN, Chen X, Liu H, Yuan H, Huang JQ, Cheng XB. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. J Mater Chem A. 2021;9(35):19664. https://doi.org/10.1039/d1ta02615a.

    Article  CAS  Google Scholar 

  10. An Q, He Wang, Zhao GF, Wang SM, Xu LF, Wang H, Fu Y, Guo H. Understanding dual-polar group functionalized COFs for accelerating li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ Mater. 2022;6(2):e12345. https://doi.org/10.1002/eem2.12345.

    Article  CAS  Google Scholar 

  11. Zhong B, Wu JY, Ren LT, Zhou TY, Zhang ZJ, Liu W, Zhou HH. Constructing a lithiophilic and mixed conductive interphase layer in electrolyte with dual-anion solvation sheath for stable lithium metal anode. Energy Storage Mater. 2022;50:792. https://doi.org/10.1016/j.ensm.2022.06.020.

    Article  Google Scholar 

  12. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J of Rare Met. 2022,46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001

    Article  Google Scholar 

  13. Li S, Wang XS, Han B, Lai C, Shi PR, Ma JB, Wang SW, Zhang LH, Liu Q, Deng YH, He YB, Yang QH. Ultrathin and high-modulus LiBO2 layer highly elevates the interfacial dynamics and stability of lithium anode under wide temperature range. Small. 2022;18(8):e2106427. https://doi.org/10.1002/smll.202106427.

    Article  CAS  Google Scholar 

  14. Han WW, Ardhi REA, Liu GC. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Met. 2021;41(2):353. https://doi.org/10.1007/s12598-021-01878-y.

    Article  CAS  Google Scholar 

  15. Tang X, Zhang W-C, Cao L-Y. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met. 2021;41(3):726. https://doi.org/10.1007/s12598-021-01843-9.

    Article  CAS  Google Scholar 

  16. Wang DD, Liu HX, Liu F, Ma GR, Yang J, Gu XD, Zhou M, Chen Z. Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries. Nano Lett. 2021;21(11):4757. https://doi.org/10.1021/acs.nanolett.1c01241.

    Article  CAS  Google Scholar 

  17. Guo SG, Piao N, Wang L, Xu H, Tian GY, Li JG, He XM. PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Appl Energ Mater. 2020;3(7):7191. https://doi.org/10.1021/acsaem.0c01232.

    Article  CAS  Google Scholar 

  18. Pieczonka NPW, Borgel V, Ziv B, Leifer N, Dargel V, Aurbach D, Kim JH, Liu ZY, Huang XS, Krachkovskiy SA, Goward GR, Halalay I, Powell BR, Manthiram A. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-Ion batteries. Adv Energy Mater. 2015;5(23):1501008. https://doi.org/10.1002/aenm.201501008.

    Article  CAS  Google Scholar 

  19. Yang CT, Lin YX, Li B, Xiao X, Qi Y. The bonding nature and adhesion of polyacrylic acid coating on Li-metal for Li dendrite prevention. ACS Appl Mater Inter. 2020;12(45):51007. https://doi.org/10.1021/acsami.0c14050.

    Article  CAS  Google Scholar 

  20. Zhao YM, Wang DW, Gao Y, Chen TH, Huang QQ, Wang DH. Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy. 2019;64:103893. https://doi.org/10.1016/j.nanoen.2019.103893.

    Article  CAS  Google Scholar 

  21. Fan LS, Guo ZK, Zhang Y, Wu X, Zhao CY, Sun X, Yang GY, Feng YJ, Zhang NQ. Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol. J Mater Chem A. 2020;8(1):251. https://doi.org/10.1039/c9ta10405d.

    Article  CAS  Google Scholar 

  22. Chen P, Li LJ, Wang C, Yi HL, Wu QF, Song LB, Wu XW, Tan L. Self-healing artificial solid electrolyte interphase enhanced by quadruple hydrogen bonding for stable lithium metal anode. Appl Surf Sci. 2022;604:154468. https://doi.org/10.1016/j.apsusc.2022.154468.

    Article  CAS  Google Scholar 

  23. Song YX, Lu WY, Chen YJ, Yang H, Wu C, Wei WF, Che LB, Ouyang XP. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Met. 2022;41(4):1255. https://doi.org/10.1007/s12598-021-01811-3.

    Article  CAS  Google Scholar 

  24. Song YX, Lu WY, Chen YJ, Yang H, Wu C, Wei WF, Chen LB, Ouyang XP. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Met. 2022;41(4):1255. https://doi.org/10.1007/s12598-021-01811-3.

    Article  CAS  Google Scholar 

  25. Li SW, Zhao T, Wang K, Sun CC, Jia WQ, Zhang M, Wang HL, Shao A, Ma Y. Unveiling the stress-buffering mechanism of the deep lithiated Ag nanowires: a polymer segmental motion strategy toward the ultra-robust Li metal anode. Adv Funct Mater. 2022;32(30):2203010. https://doi.org/10.1002/adfm.202203010.

    Article  CAS  Google Scholar 

  26. Zhao ZN, Qian MM, Wang J, Cao WZ, Qin XF, Guo PH, Hao S, Wang R, Wu F, Tan GQ. Chemical substitution-grown Li-Mg alloy as ion redistributor and surface protector for highly stable lithium metal anode. Batteries Supercaps. 2022;5(10):e202200232. https://doi.org/10.1002/batt.202200232.

    Article  CAS  Google Scholar 

  27. Yuan YX, Wu F, Bai Y, Li Y, Chen GH, Wang ZH, Wu C. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 2019;16:411. https://doi.org/10.1016/j.ensm.2018.06.022.

    Article  Google Scholar 

  28. Liu YJ, Tao XY, Wang Y, Jiang C, Ma C, Sheng OW, Lu GX, Lou XWD. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science. 2022;375(6582):739. https://doi.org/10.1126/science.abn1818.

    Article  CAS  Google Scholar 

  29. Lu YY, Tu ZY, Shu J, Archer LA. Stable lithium electrodeposition in salt-reinforced electrolytes. J Power Sources. 2015;279:413. https://doi.org/10.1016/j.jpowsour.2015.01.030.

    Article  CAS  Google Scholar 

  30. Yao X, Wang J, Lin SR, Tao CZ, Zhang XZ, Wang W, Zhao CC, Wang L, Bao JL, Wang YG, Liu TX. Surface bromination of lithium-metal anode for high cyclic efficiency. Adv Energy Mater. 2022;13(7):2203233. https://doi.org/10.1002/aenm.202203233.

    Article  CAS  Google Scholar 

  31. Qian SS, Xing C, Zheng MT, Su Z, Chen H, Wu ZZ, Lai C, Zhang SQ. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv Energy Mater. 2022;12(15):2103480. https://doi.org/10.1002/aenm.202103480.

    Article  CAS  Google Scholar 

  32. Tan L, Chen QY, Chen P, Huang X, Li LJ, Zou KY, Liu DF. Lithium chloride protective layer for stable lithium metal anode via a facile surface chemistry. J Electroanal Chem. 2023;928:117063. https://doi.org/10.1016/j.jelechem.2022.117063.

    Article  CAS  Google Scholar 

  33. Hu AJ, Chen W, Du XC, Hu Y, Lei TY, Wang HB, Xue LX, Li YY, Sun H, Yan YC, Long JP, Shu CZ, Zhu J, Li BH, Wang XF, Xiong J. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energ Environ Sci. 2021;14(7):4115. https://doi.org/10.1039/d1ee00508a.

    Article  CAS  Google Scholar 

  34. Lai YF, Zhang HY, Xia GL, Yu XB. Long-term stable Li metal anode enabled by strengthened and protected lithiophilic LiZn alloys. J Power Sources. 2022;543:231839. https://doi.org/10.1016/j.jpowsour.2022.231839.

    Article  CAS  Google Scholar 

  35. Zhao F, Deng W, Dong DJ, Zhou XF, Liu ZP. Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. Mater Today Energy. 2022;26:100988. https://doi.org/10.1016/j.mtener.2022.100988.

    Article  CAS  Google Scholar 

  36. Yuan YX, Wu F, Chen GH, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem. 2019;37:197. https://doi.org/10.1016/j.jechem.2019.03.014.

    Article  Google Scholar 

  37. He YB, Zou PC, Bak SM, Wang CY, Zhang R, Yao LB, Du YH, Hu EY, Lin RQ, Xin HLL. Dual passivation of cathode and anode through electrode-electrolyte interface engineering enables long-lifespan Li metal–SPAN batteries. ACS Energy Lett. 2022;7(9):2866. https://doi.org/10.1021/acsenergylett.2c01093.

    Article  CAS  Google Scholar 

  38. Cheng YF, Ming YX, Hao LM, Yan LX, Zhen LX, Jie WD, Bing H, Qing Z, Min ZY, Meng G. Enabling ultrastable alkali metal anodes by artificial solid electrolyte interphase fluorination. Nano Lett. 2022;22(11):4347. https://doi.org/10.1021/acs.nanolett.2c00616.

    Article  CAS  Google Scholar 

  39. Wang YD, Liang JC, Song XM, Jin Z. Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Mater. 2022;54:732. https://doi.org/10.1016/j.ensm.2022.10.054.

    Article  Google Scholar 

  40. Liang X, Pang Q, Kochetkov IR, Sempere MS, Huang H, Sun XQ, Nazar LF. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy. 2017;2(9):17119. https://doi.org/10.1038/nenergy.2017.119.

    Article  CAS  Google Scholar 

  41. Touja J, Louvain N, Stievano L, Monconduit L, Berthelot R. An overview on protecting metal anodes with alloy-type coating. Batteries Supercaps. 2021;4(8):1252. https://doi.org/10.1002/batt.202100009.

    Article  CAS  Google Scholar 

  42. Liu XY, Xu P, Zhang JL, Hu XY, Hou Q, Lin XD, Zheng MS, Dong QF. A highly reversible lithium metal anode by constructing lithiophilic Bi-nanosheets. Small. 2021;17(45):e2102016. https://doi.org/10.1002/smll.202102016.

    Article  CAS  Google Scholar 

  43. Zhang YJ, Wang HM, Liu X, Zhou C, Li G-R, Liu S, Gao X-P. A dimensionally stable lithium alloy based composite electrode for lithium metal batteries. Chem Eng J. 2022;450:138074. https://doi.org/10.1016/j.cej.2022.138074.

    Article  CAS  Google Scholar 

  44. Fu XL, Shang CQ, Zhou GF, Wang X. Li3Bi/LiF/Li2O derived from mechanical rolling of Li metal with BiOF nanoplates as stable filler for dendrite-free Li metal batteries. J Colloid Interface Sci. 2022;626:435. https://doi.org/10.1016/j.jcis.2022.06.167.

    Article  CAS  Google Scholar 

  45. Zhao B, Shi YR, Wu J, Xing C, Liu YQ, Ma WC, Liu XY, Jiang Y, Zhang JJ. Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer. Chem Eng J. 2022;429:132411. https://doi.org/10.1016/j.cej.2021.132411.

    Article  CAS  Google Scholar 

  46. Cui C, Zhang RP, Fu CK, Xiao R, Li RL, Ma YL, Wang JJ, Gao YZ, Yin GP, Zuo PJ. Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem Eng J. 2022;433:133570. https://doi.org/10.1016/j.cej.2021.133570.

    Article  CAS  Google Scholar 

  47. Ren YX, Wei L, Jiang HR, Zhao C, Zhao TS. On-site fluorination for enhancing utilization of lithium in a lithium-sulfur full battery. ACS Appl Mater Inter. 2020;12:53860. https://doi.org/10.1021/acsami.0c17576.

    Article  CAS  Google Scholar 

  48. Zhao YM, Du AB, Dong SM, Jiang F, Guo ZY, Ge XS, Qu XL, Zhou XH, Cui GL. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes. ACS Energy Lett. 2021;6(7):2594. https://doi.org/10.1021/acsenergylett.1c01243.

    Article  CAS  Google Scholar 

  49. Pathak R, Chen K, Gurung A, Reza KM, Bahrami B, Pokharel J, Baniya A, He W, Wu F, Zhou Y, Xu K, Qiao QQ. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun. 2020;11(1):93. https://doi.org/10.1038/s41467-019-13774-2.

    Article  CAS  Google Scholar 

  50. Han WW, Ardhi REA, Liu GC. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Met. 2022;41(2):353. https://doi.org/10.1007/s12598-021-01878-y

    Article  CAS  Google Scholar 

  51. Baek M, Kim J, Jeong K, Yang S, Kim H, Lee J, Kim M, Kim KJ, Choi JW. Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nat Commun. 2023;14(1):1296. https://doi.org/10.1038/s41467-023-36934-x.

    Article  CAS  Google Scholar 

  52. Chen C, Liang QW, Wang G, Liu DD, Xiong XH. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv Funct Mater. 2021;32(4):2107249. https://doi.org/10.1002/adfm.202107249.

    Article  CAS  Google Scholar 

  53. Shao YL, Qin YP, Song Y, Xu KY, Wang HF, Shen C, Chen RM, Lyu YC, Liu Y, Guo BK. Bismuth-contained lithiophilic protective layer on lithium metal anode in situ generated via electrochemical method. ACS Sustain Chem Eng. 2022;10(35):11493. https://doi.org/10.1021/acssuschemeng.2c02652.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52204306 and 52204319), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (No. 2023JJ10044), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 21C0192 and 22A0211), the Science and Technology Planning Project of Hunan Province (No. 2019RS2034), Hunan High-tech Industry Science and Technology Innovation Leading Plan (No. 2020GK2072), Changsha City Fund for Distinguished and Innovative Young Scholars (No. KQ1707014) and the Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology (No. CXCLY2022147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Jun Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10584 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Chen, P., Chen, QY. et al. A Li3Bi/LiF interfacial layer enabling highly stable lithium metal anode. Rare Met. 42, 4081–4090 (2023). https://doi.org/10.1007/s12598-023-02416-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02416-8

Keywords

Navigation