Skip to main content
Log in

Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The finite lithium-ion utilization, short cycling life, and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’ (LMBs’) commercialization. Herein, a perfluoroalkyl-functionalized covalent organic framework (COF-F6) equipped with high stability and supernal proton conduction is introduced as an artificial solid electrolyte interface to stable the lithium metal anode. Benefiting from the strong electron-withdrawing effect of perfluoroalkyl, Li+ will be freed more by the competition of electronegative fluorine (F) and bis(trifluoromethanesulphonyl)imide anion (TFSI). The dissociation of LiTFSI and process of Li+ desolvation are easier to achieve. In addition, high electronegative fluorine can also regulate local electron-cloud density to induce the fast immigration of Li+. All the above roles contribute to improving the Li+ transfer number (0.7) and achieving the goal of inhibiting Li dendrite. As a result, the perfluoroalkyl COF-F6 modified LMB presents outstanding cycling stability. The symmetric batteries accomplish an overlong life-span of more than 5000 h with a lower hysteresis voltage (11 mV) at 5 mA·cm−2. Also, no dendrites are observed when using an in-situ optical microscope to learn the process of Li deposition. Therefore, this dendrite-free protection tactic holds broad prospects for the practical application of Li metal anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, M. Y.; Shao, F.; Wen, P.; Chen, K. X.; Li, J. R.; Zhou, Y.; Liu, Y. L.; Jia, M. Y.; Chen, M.; Lin, X. R. Designing weakly solvating solid main-chain fluoropolymer electrolytes: Synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 2021, 6, 4255–4264.

    CAS  Google Scholar 

  2. Jia, M. Y.; Wen, P.; Wang, Z. T.; Zhao, Y. C.; Liu, Y. M.; Lin, J.; Chen, M.; Lin, X. R. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv. Funct. Mater. 2021, 31, 2101736.

    CAS  Google Scholar 

  3. He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

    CAS  Google Scholar 

  4. Xia, S. B.; Cai, Y. Q.; Yao, L. F.; Shi, J. Y.; Cheng, F. X.; Liu, J. J.; He, Z. J.; Zheng, J. C. Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage. Energy Storage Mater. 2022, 50, 225–233.

    Google Scholar 

  5. Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.

    CAS  Google Scholar 

  6. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    CAS  Google Scholar 

  7. Chen, W.; Hu, Y.; Lv, W. Q.; Lei, T. Y.; Wang, X. F.; Li, Z. H.; Zhang, M.; Huang, J. W.; Du, X. C.; Yan, Y. C. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 2019, 10, 4973.

    Google Scholar 

  8. Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

    CAS  Google Scholar 

  9. Hou, Z.; Zhang, J. L.; Wang, W. H.; Chen, Q. W.; Li, B. H.; Li, C. L. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J. Energy Chem. 2020, 45, 7–17.

    Google Scholar 

  10. Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

    Google Scholar 

  11. Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    CAS  Google Scholar 

  12. Tang, L. B.; Yang, P.; Chen, Y. J.; Li, P. Y.; Peng, T.; Wei, H. X.; Wang, Z. Y.; He, Z. J.; Yan, C.; Mao, J. et al. Cation doping constructed vacancy engineering for designing Sn3Se5@PPy heterostructures toward lithium/sodium-ion batteries. J. Power Sources 2022, 552, 232210.

    CAS  Google Scholar 

  13. Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

    CAS  Google Scholar 

  14. Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.

    Google Scholar 

  15. Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

    CAS  Google Scholar 

  16. Dong, L. W.; Liu, Y. P.; Wen, K. C.; Chen, D. J.; Rao, D. W.; Liu, J. P.; Yuan, B. T.; Dong, Y. F.; Wu, Z.; Liang, Y. F. et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries. Adv. Sci. (Weinh.) 2022, 9, 2104699.

    CAS  Google Scholar 

  17. Wen, Y. C.; Ding, J. Y.; Yang, Y.; Lan, X. X.; Liu, J.; Hu, R. Z.; Zhu, M. Introducing NO3 into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2109377.

    CAS  Google Scholar 

  18. Jiang, Z. P.; Zeng, Z. Q.; Yang, C. K.; Han, Z. L.; Hu, W.; Lu, J.; Xie, J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019, 19, 8780–8786.

    CAS  Google Scholar 

  19. Zhou, P.; Xia, Y. C.; Hou, W. H.; Yan, S. S.; Zhou, H. Y.; Zhang, W. L.; Lu, Y.; Wang, P. C.; Liu, K. Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry. Nano Lett. 2022, 22, 5936–5943.

    CAS  Google Scholar 

  20. Zhao, Q. N.; Wang, R. H.; Hu, X. L.; Wang, Y. M.; Lu, G. J.; Yang, Z. G.; Liu, Q. W.; Yang, X. K.; Pan, F. S.; Xu, C. H. Functionalized 12 µm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries. Adv. Sci. (Weinh.) 2022, 9, 2102215.

    CAS  Google Scholar 

  21. Li, Z. H.; Ji, W. Y.; Wang, T. X.; Zhang, Y. R.; Li, Z.; Ding, X. S.; Han, B. H.; Feng, W. Guiding uniformly distributed Li-ion flux by lithiophilic covalent organic framework interlayers for highperformance lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 22586–22596.

    CAS  Google Scholar 

  22. Zhao, J. C.; Yan, G. J.; Zhang, X. J.; Feng, Y.; Li, N. W.; Shi, J. J.; Qu, X. W. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li-S batteries. Chem. Eng. J. 2022, 442, 136352.

    CAS  Google Scholar 

  23. Cao, Y.; Liu, C.; Wang, M. D.; Yang, H.; Liu, S.; Wang, H. L.; Yang, Z. X.; Pan, F. S.; Jiang, Z. Y.; Sun, J. Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207–215.

    Google Scholar 

  24. Li, Z. H.; Ji, W. Y.; Wang, T. X.; Ding, X. S.; Han, B. H.; Feng, W. Maximized lithiophilic carbonyl units in covalent organic frameworks as effective Li ion regulators for lithium metal batteries. Chem. Eng. J. 2022, 437, 135293.

    CAS  Google Scholar 

  25. Yan, J.; Liu, F. Q.; Hu, Z. Y.; Gao, J.; Zhou, W. D.; Huo, H.; Zhou, J. J.; Li, L. Realizing dendrite-free lithium deposition with a composite separator. Nano Lett. 2020, 20, 3798–3807.

    CAS  Google Scholar 

  26. An, Q.; Wang, H. E.; Zhao, G. F.; Wang, S. M.; Xu, L. F.; Wang, H.; Fu, Y.; Guo, H. Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12345.

  27. Chen, D. D.; Liu, P.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Huang, S.; Meng, Y. Z. Covalent organic frameworks with low surface work function enabled stable lithium anode. Small. 2021, 17, 2101496.

    CAS  Google Scholar 

  28. Li, X. R.; Tian, Y.; Shen, L.; Qu, Z. B.; Ma, T. Q.; Sun, F.; Liu, X. Y.; Zhang, C.; Shen, J. Q.; Li, X. Y. et al. Electrolyte interphase built from anionic covalent organic frameworks for lithium dendrite suppression. Adv. Funct. Mater. 2021, 31, 2009718.

    CAS  Google Scholar 

  29. Wang, W. B.; Yang, Z. H.; Zhang, Y. T.; Wang, A. P.; Zhang, Y. R.; Chen, L. L.; Li, Q.; Qiao, S. L. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater. 2022, 46, 374–383.

    Google Scholar 

  30. Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

    CAS  Google Scholar 

  31. Xu, Y.; Zhou, Y.; Li, T.; Jiang, S. H.; Qian, X.; Yue, Q.; Kang, Y. J. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 25, 334–341.

    Google Scholar 

  32. Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

    Google Scholar 

  33. Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256–4265.

    CAS  Google Scholar 

  34. Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    CAS  Google Scholar 

  35. Zhao, G. F.; Li, H. N.; Gao, Z. H.; Xu, L. F.; Mei, Z. Y.; Cai, S.; Liu, T. T.; Yang, X. F.; Guo, H.; Sun, X. L. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance Li storage. Adv. Funct. Mater. 2021, 31, 2101019.

    CAS  Google Scholar 

  36. Gui, B.; Lin, G. Q.; Ding, H. M.; Gao, C.; Mal, A.; Wang, C. Three-dimensional covalent organic frameworks: From topology design to applications. Acc. Chem. Res. 2020, 53, 2225–2234.

    CAS  Google Scholar 

  37. Zhang, Y. R.; Wang, W. B.; Hou, M. L.; Zhang, Y. T.; Dou, Y. Y.; Yang, Z. H.; Xu, X. Y.; Liu, H. N.; Qiao, S. L. Self-exfoliated covalent organic framework nano-mesh enabled regular charge distribution for highly stable lithium metal battery. Energy Storage Mater. 2022, 47, 376–385.

    Google Scholar 

  38. He, J. R.; Bhargav, A.; Manthiram, A. Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem., Int. Ed. 2022, 61, 202116586.

    Google Scholar 

  39. Wu, X. W.; Hong, Y. L.; Xu, B. Q.; Nishiyama, Y.; Jiang, W.; Zhu, J. W.; Zhang, G.; Kitagawa, S.; Horike, S. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J. Am. Chem. Soc. 2020, 142, 14357–14364.

    CAS  Google Scholar 

  40. Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

    CAS  Google Scholar 

  41. Li, J.; Zhang, H. T.; Cui, Y. Y.; Da, H. R.; Cai, Y. J.; Zhang, S. J. Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for hour-rate solid-state batteries. Nano Energy. 2022, 102, 107716.

    CAS  Google Scholar 

  42. Ma, T.; Ni, Y. X.; Wang, Y. Q.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.

    CAS  Google Scholar 

  43. Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.

    CAS  Google Scholar 

  44. Zhao, G. F.; Mei, Z. Y.; Duan, L. Y.; An, Q.; Yang, Y. X.; Zhang, C. H.; Tan, X. P.; Guo, H. COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy, in press, https://doi.org/10.1002/cey2.248.

  45. Zhao, Z. D.; Wang, R.; Peng, C. X.; Chen, W. J.; Wu, T. Q.; Hu, B.; Weng, W. J.; Yao, Y.; Zeng, J. X.; Chen, Z. H. et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.

    CAS  Google Scholar 

  46. Lu, Y. Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.

    Google Scholar 

  47. Tu, Z. Y.; Nath, P.; Lu, Y. Y.; Tikekar, M. D.; Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 2015, 48, 2947–2956.

    CAS  Google Scholar 

  48. Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

    CAS  Google Scholar 

  49. Ren, X. D.; Gao, P. Y.; Zou, L. F.; Jiao, S. H.; Cao, X.; Zhang, X. H.; Jia, H.; Engelhard, M. H.; Matthews, B. E.; Wu, H. P. et al. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. USA 2020, 117, 28603–28613.

    CAS  Google Scholar 

  50. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial supports provided by the National Natural Science Foundation of China (No. 52064049), Key Laboratory of Solid-State Ions for Green Energy of Yunnan University (2019), Analysis and Measurements Center of Yunnan University for the sample testing service, the Electron Microscope Center of Yunnan University for the support of this work, and the Postgraduate Research and Innovation Foundation of Yunnan University (No. KC-22221440). The authors would like to thank Jiao Kang and Shu-di Ren from Shiyanjia Lab (https://www.shiyanjia.com) for the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guo.

Electronic Supplementary Material

12274_2023_5534_MOESM1_ESM.pdf

Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, C., Mei, Z. et al. Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Res. 16, 9289–9298 (2023). https://doi.org/10.1007/s12274-023-5534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5534-0

Keywords

Navigation