Skip to main content
Log in

Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Superhydrophilic surfaces have been applied for supercapacitor; however, during energy storage reaction, how the wettability affects the process of electrochemical reaction specifically is still unclear. Herein, we demonstrate superhydrophilic surface for promotion of electrochemical reactions by liquid affinity and further explain the mechanism, where the transition of the wettability state caused by the change in surface free energy is the main reason for the obvious increase in specific capacitance. Through citric acid assistance strategy, an intrinsically hydrophobic Ni(OH)2 thick nanosheets (HNHTNs, 16 nm) can be transitioned into superhydrophilic Ni(OH)2 ultrathin nanosheets (SNHUNs, 6.8 nm), where the water contact angle was 0° and the surface free energy increased from 8.6 to 65.8 mN·m−1, implying superhydrophilicity. Compared with HNHTNs, the specific capacitance of SNHUNs is doubled: from 1230 F·g−1 (HNHTNs) to 2350 F·g−1 (2 A·g−1) and, even at 20 A·g−1, from 833 F·g−1 (HNHTNs) to 1670 F·g−1. The asymmetric capacitors assembled by SNHUNs and activated carbon show 52.44 Wh·kg−1 at 160 W·kg−1 and excellent stability with ~ 90% retention after 5000 cycles (~ 80% retention after 9500 cycles). The promotion of electrochemical performances is ascribed to the change of surface wettability caused by surface free energy, which greatly increase affinity of electrode to the surrounding liquid environment to reduce the interface resistance and optimize the electron transport path.

Graphical Abstract

摘要

超亲水表面已应用于超级电容器, 但在储能反应过程中, 电极材料的润湿性如何影响电化学反应过程尚不清楚. 我们证实了超亲水电极材料的表面自由能变化引起的润湿性状态的转变可以有效的提升电化学性能. 首先, 通过柠檬酸辅助策略, l可以将本质疏水的Ni(OH)2厚纳米片(16 nm)转变为超亲水Ni(OH)2超薄纳米片(6.8 nm), 其表面自由能由8.6 mN·m−1增加到65.8 mN·m−1. 与疏水Ni(OH)2相比, 超亲水Ni(OH)2超级电容器的比电容大约是其两倍. 在2 A·g−1下, 疏水Ni(OH)2为1230 F·g−1, 超亲水Ni(OH)2为2350 F·g−1; 即使在20 A·g−1, 疏水Ni(OH)2为833 F·g−1, 超亲水Ni(OH)2为1670 F·g−1. 由超亲水Ni(OH)2和活性炭组合而成的非对称电容器在160 W·kg−1的功率密度下展示了52.44 Wh·kg−1的能量密度. 在5000次循环后比电容的留存率为90%, 9500次循环后比电容的留存率为80%. 我们提出了润湿性对电化学性能提升的影响机制: 由于表面自由能引起表面润湿性的改变, 极大地提高了电极对周围液体环境的亲和力, 从而降低了界面电阻, 优化了电子传递路径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2020;118(18):9233. https://doi.org/10.1021/acs.chemrev.8b00252.

    Article  CAS  Google Scholar 

  2. Guo YJ, Zhang CH, Xin S, Shi JL, Wang WP, Fan M, Chang YX, He WH, Wang E, Zou YG, Yang X, Meng F, Zhang YY, Lei ZQ, Yin YX, Guo YG. Competitive doping chemistry for nickel-rich layered oxide cathode materials. Angew Chem Int Ed 2022;61(21):e202116865. https://doi.org/10.1002/anie.202116865.

  3. Tan SJ, Wang WP, Tian YF, Xin S, Guo YG. Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects. Adv Funct Mater. 2021;31(45):2105253. https://doi.org/10.1002/adfm.202105253.

    Article  CAS  Google Scholar 

  4. Zhang L, Shi D, Liu T, Jaroniec M, Yu J. Nickel-based materials for supercapacitors. Mater Today. 2019;25:35. https://doi.org/10.1016/j.mattod.2018.11.002.

    Article  CAS  Google Scholar 

  5. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep. 2014;4:5787. https://doi.org/10.1038/srep05787.

    Article  CAS  Google Scholar 

  6. Chen Y, Meng J, Gu Z, Wan X, Jiang L, Wang S. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Adv Funct Mater. 2019;30(5):1. https://doi.org/10.1002/adfm.201905287.

    Article  CAS  Google Scholar 

  7. Miao W, Tian Y, Jiang L. Bioinspired superspreading surface: from essential mechanism to application. Acc Chem Res. 2022;55(11):1467. https://doi.org/10.1021/acs.accounts.2c00042.

    Article  CAS  Google Scholar 

  8. Kang X, Wang D, Liu J, Tian C, Xu H, Xu J, Fu H. Ni-promoted MoS2 in hollow zeolite nanoreactors: enhanced catalytic activity and stability for deep hydrodesulfurization. J Mater Chem A. 2022;10(13):7263. https://doi.org/10.1039/d2ta00034b.

    Article  CAS  Google Scholar 

  9. Zhang S, Yuan Y, Gu J, Huang X, Li P, Yin K, Xiao Z, Wang D. Surface defect-induced electronic structures of lead-free Cs2AgBiBr6 double-perovskite for efficiently solar-driven photocatalytic performance. Appl Surf Sci. 2023;609:155446. https://doi.org/10.1016/j.apsusc.2022.155446.

    Article  CAS  Google Scholar 

  10. Zhang T, Wu X, Jiang J, Xiang Y, Zhu L, Wu X. Energy storage mechanism, issue and modification strategies of vanadium-based cathode materials for aqueous zinc ion batteries. Chin J Rare Metals. 2023;47(3):399. https://doi.org/10.13373/j.cnki.cjrm.XY21040028.

    Article  Google Scholar 

  11. Zuo Y, Wang K, Zhao S, Wei M, Liu X, Zhang P, Xiao Y, Xiong J. A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte. Chem Eng J. 2022;430:1329. https://doi.org/10.1016/j.cej.2021.132996.

    Article  CAS  Google Scholar 

  12. Cai Z, Zhang Y, Zhao Y, Wu Y, Xu W, Wen X, Zhong Y, Zhang Y, Liu W, Wang H, Kuang Y, Sun X. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2018;12(2):345. https://doi.org/10.1007/s12274-018-2221-7.

    Article  CAS  Google Scholar 

  13. Shi R, Guo J, Zhang X, Waterhouse GIN, Han Z, Zhao Y, Shang L, Zhou C, Jiang L, Zhang T. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat Commun. 2020;11(1):3028. https://doi.org/10.1038/s41467-020-16847-9.

    Article  CAS  Google Scholar 

  14. Légaré MA, Bélanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H. Nitrogen fixation and reduction at boron. Science. 2018;359(6378):896. https://doi.org/10.1126/science.aaq1684.

    Article  CAS  Google Scholar 

  15. Lai F, Zong W, He G, Xu Y, Huang H, Weng B, Rao D, Martens JA, Hofkens J, Parkin IP, Liu T. N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface. Angew Chem Int Ed Engl. 2020;59(32):13320. https://doi.org/10.1002/anie.202003129.

    Article  CAS  Google Scholar 

  16. Hadden JHL, Ryan MP, Riley DJ. Is nickel hydroxide charging only skin-deep? ACS Appl Energy Mater. 2020;3(3):2803. https://doi.org/10.1021/acsaem.9b02452.

    Article  CAS  Google Scholar 

  17. Mao L, Zhao X, Li Y, Chen L. New nickel-rich ternary carbonate hydroxide two-dimensional porous sheets for high-performance aqueous asymmetric supercapattery. J Colloid Interface Sci. 2022;624:482. https://doi.org/10.1016/j.jcis.2022.05.148.

    Article  CAS  Google Scholar 

  18. Li Y, Zhu L, Shi J, Dou Y, Li S, You R, Zhang S, Miao X, Shi S, Ji H, Yang G. Super-hydrophilic microporous biochar from biowaste for supercapacitor application. Appl Surf Sci. 2021;561:150076. https://doi.org/10.1016/j.apsusc.2021.150076.

    Article  CAS  Google Scholar 

  19. Seo E, Lee T, Lee KT, Song HK, Kim BS. Versatile double hydrophilic block copolymer: dual role as synthetic nanoreactor and ionic and electronic conduction layer for ruthenium oxide nanoparticle supercapacitors. J Mater Chem. 2012;22(23):11598. https://doi.org/10.1039/c2jm30738c.

    Article  CAS  Google Scholar 

  20. Chang J, Li H, Yang L, Liu H. Surface-hydrophilic-modified carbon aerogels via surface-initiated electrochemically mediated atom transfer radical polymerization for high-performance supercapacitors. J Mater Sci Mater Electron. 2020;31(23):21379. https://doi.org/10.1007/s10854-020-04650-7.

    Article  CAS  Google Scholar 

  21. Younas W, Naveed M, Cao C, Khalid S, Rafai S, Wang Z, Wu Y, Yang L. Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor. Appl Surf Sci. 2020;505:144618. https://doi.org/10.1016/j.apsusc.2019.144618.

    Article  CAS  Google Scholar 

  22. Geng H, Bai H, Fan Y, Wang S, Ba T, Yu C, Cao M, Jiang L. Unidirectional water delivery on a superhydrophilic surface with two-dimensional asymmetrical wettability barriers. Mater Horizons. 2018;5(2):303. https://doi.org/10.1039/c7mh01138e.

    Article  CAS  Google Scholar 

  23. Wang H, Ren X, Chen J, Xu W, He Q, Wang H, Zhan F, Chen L. Recent advances of emerging oxyhydroxide for electrochemical energy storage applications. J Power Sources. 2023;554:232309. https://doi.org/10.1016/j.jpowsour.2022.232309.

    Article  CAS  Google Scholar 

  24. Gu J, Fan X, Liu X, Li S, Wang Z, Tang S, Yuan D. Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chem Eng J. 2017;324:35. https://doi.org/10.1016/j.cej.2017.05.014.

    Article  CAS  Google Scholar 

  25. Jiang H, Zhao T, Li C, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem. 2011;21(11):3818. https://doi.org/10.1039/c0jm03830j.

    Article  CAS  Google Scholar 

  26. Natarajan S, Ulaganathan M, Aravindan V. Building next-generation supercapacitors with battery type Ni(OH)2. J Mater Chem A. 2021;9(28):15542. https://doi.org/10.1039/d1ta03262c.

    Article  CAS  Google Scholar 

  27. Xu W, Zhao X, Zhan F, He Q, Wang H, Chen J, Wang H, Ren X, Chen L. Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: progress and perspectives. Energy Storage Mater. 2022;53:79. https://doi.org/10.1016/j.ensm.2022.08.039.

    Article  Google Scholar 

  28. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ. Biomimetic arrays of oriented helical ZnO nanorods and columns. J Am Chem Soc. 2002;124(44):12954. https://doi.org/10.1021/ja0279545.

    Article  CAS  Google Scholar 

  29. Tian ZR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu H. Complex and oriented ZnO nanostructures. Nat Mater. 2003;2(12):821. https://doi.org/10.1038/nmat1014.

    Article  CAS  Google Scholar 

  30. Yin B, Liang J, Hao J, Dai C, Jia H, Wang H, Wang DS, Shu FJ, Zhang C, Gu JM, Zhao YS. Nonconfinement growth of edge-curved molecular crystals for self-focused microlasers. Sci Adv. 2022;8(42):eabn8106. https://doi.org/10.1126/sciadv.abn8106.

    Article  CAS  Google Scholar 

  31. Wu J, Zhang H, Du N, Ma X, Yang D. General solution route for nanoplates of hexagonal oxide or hydroxide. J Phys Chem B. 2006;110(23):11196. https://doi.org/10.1021/jp060388.

    Article  CAS  Google Scholar 

  32. Li L, Xu J, Lei J, Zhang J, McLarnon F, Wei Z, Li N, Pan F. A one-step, cost-effective green method to in situ fabricate Ni(OH)2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. J Mater Chem A. 2015;3(5):1953. https://doi.org/10.1039/c4ta05156d.

    Article  CAS  Google Scholar 

  33. Gyliene O, Aikaite J, Nivinskiene O. Recycling of Ni(II)-citrate complexes using precipitation in alkaline solutions. J Hazard Mater. 2004;109(1–3):105. https://doi.org/10.1016/j.jhazmat.2004.03.008.

    Article  CAS  Google Scholar 

  34. Li Y, Huang B, Zhao X, Luo Z, Liang S, Qin H, Chen L. Zeolitic imidazolate framework-L-assisted synthesis of inorganic and organic anion-intercalated hetero-trimetallic layered double hydroxide sheets as advanced electrode materials for aqueous asymmetric super-capacitor battery. J Power Sources. 2022;527:231149. https://doi.org/10.1016/j.jpowsour.2022.231149.

    Article  CAS  Google Scholar 

  35. Chu H, Hu X, Yao J, Yan G, Sun N, Deng C. One-pot preparation of hydrophilic citric acid-magnetic nanoparticles for identification of glycopeptides in human saliva. Talanta. 2020;206:120178. https://doi.org/10.1016/j.talanta.2019.120178.

    Article  CAS  Google Scholar 

  36. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater. 2012;22(12):2632. https://doi.org/10.1002/adfm.201102839.

    Article  CAS  Google Scholar 

  37. Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J. Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim Acta. 2015;173:399. https://doi.org/10.1016/j.electacta.2015.05.081.

    Article  CAS  Google Scholar 

  38. Qiu H, An S, Sun X, Yang H, Zhang Y, He W. Excellent performance MWCNTs-GONRs/Ni(OH)2 electrode for outstanding supercapacitors. Ceram Int. 2019;45(15):18422. https://doi.org/10.1016/j.ceramint.2019.06.059.

    Article  CAS  Google Scholar 

  39. Zhang F, Zhao R, Wang Y, Han L, Gu J, Niu Z, Yuan Y, Qu N, Meng J, Wang D. Superwettable surface-dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption. Chem Eng J. 2023;452:139513. https://doi.org/10.1016/j.cej.2022.139513.

    Article  CAS  Google Scholar 

  40. Meng J, Wang S. Advanced antiscaling interfacial materials toward highly efficient heat energy transfer. Adv Funct Mater. 2019;30(8):1. https://doi.org/10.1002/adfm.201904796.

    Article  CAS  Google Scholar 

  41. Chen W, Zhang P, Zang R, Fan J, Wang S, Wang B, Meng J. Nacre-inspired mineralized films with high transparency and mechanically robust underwater superoleophobicity. Adv Mater. 2020;32(11):1907413. https://doi.org/10.1002/adma.201907413.

    Article  CAS  Google Scholar 

  42. Wang Y, Xiao J, Zhang T, Ouyang L, Yuan S. Single-step preparation of ultrasmall iron oxide-embedded carbon nanotubes on carbon cloth with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl Mater Interfaces. 2021;13(38):45670. https://doi.org/10.1021/acsami.1c15337.

    Article  CAS  Google Scholar 

  43. Wu Y, Wang N, Liu H, Cui R, Gu J, Sun R, Zhu Y, Gou L, Fan X, Li D, Wang D. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J Colloid Interface Sci. 2023;629:916. https://doi.org/10.1016/j.jcis.2022.09.022.

    Article  CAS  Google Scholar 

  44. Zhang GC, Feng M, Li Q, Wang Z, Fang Z, Niu Z, Qu N, Fan X, Li S, Gu J, Wang J, Wang D. High energy density in combination with high cycling stability in hybrid supercapacitors. ACS Appl Mater Interfaces. 2022;14(2):2674. https://doi.org/10.1021/acsami.1c17285.

    Article  CAS  Google Scholar 

  45. Zhou M, Yan SX, Wang Q, Tan MX, Wang DY, Yu ZQ, Luo SH, Zhang YH, Liu X. Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met. 2022;41(7):2280. https://doi.org/10.1007/s12598-021-01957-0.

    Article  CAS  Google Scholar 

  46. Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577. https://doi.org/10.1021/cr100290v.

    Article  CAS  Google Scholar 

  47. Xu HH, Yue L, Tang Y, Liu F, Zhu HJ, Bao SJ. Preparation of chitosan and citric acid crosslinked membrane and its application in quasi-solid supercapacitors. Rare Met. 2023;42(2):430. https://doi.org/10.1007/s12598-022-02115-w.

    Article  CAS  Google Scholar 

  48. Wang Z, Gu J, Li S, Zhang GC, Zhong J, Fan X, Yuan D, Tang S, Xiao D. One-step polyoxometalates-assisted synthesis of manganese dioxide for asymmetric supercapacitors with enhanced cycling lifespan. ACS Sustain Chem Eng. 2018;7(1):258. https://doi.org/10.1021/acssuschemeng.8b03072.

    Article  CAS  Google Scholar 

  49. Wu Y, Cao C. The way to improve the energy density of supercapacitors: progress and perspective. Sci China Mater. 2018;61(12):1517. https://doi.org/10.1007/s40843-018-9290-y.

    Article  CAS  Google Scholar 

  50. Fu R, Yu C, Li S, Yu J, Wang Z, Guo W, Xie Y, Yang L, Liu K, Ren W, Qiu J. A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chem. 2021;23(9):3400. https://doi.org/10.1039/d1gc00670c.

    Article  CAS  Google Scholar 

  51. Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun. 2016;7:11782. https://doi.org/10.1038/ncomms11782.

    Article  CAS  Google Scholar 

  52. Ji Z, Li N, Zhang NY, Xie M, Shen X, Chen L, Xu K, Zhu G. Nitrogen-doped carbon dots decorated ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitor. J Colloid Interface Sci. 2019;542:392. https://doi.org/10.1016/j.jcis.2019.02.037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22278349 and 62071413), Hebei Natural Science Foundation (Nos. B2020203013 and F2020203056), the Science and Technology Project of Hebei Education Department (No. QN2020137), Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance (No. 22567616H), the Cultivation Project for Basic Research Innovation of Yanshan University (No. 2021LGZD015), the Natural Science Foundation of Heilongjiang Province of China (No. LH2022B025) and the Fundamental Research Funds for the Provincial Universities of Heilongjiang Province (No. KYYWF10236190104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Min Gu, Tian-Hui Wu, Ji-Dong Wang or De-Song Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6932 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YR., Zhang, F., Gu, JM. et al. Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors. Rare Met. 43, 138–147 (2024). https://doi.org/10.1007/s12598-023-02386-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02386-x

Keywords

Navigation