Skip to main content
Log in

Oxygen-deficient ammonium vanadate/GO composites with suppressed vanadium dissolution for ultra-stable high-rate aqueous zinc-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The structural engineering of hydrated ammonium vanadate as a cathode for aqueous Zn-ion batteries has attracted significant research interest because of its ability to suppress vanadium dissolution and accelerate the electrochemical dynamics. Herein, a feasible fabrication strategy for oxygen-deficient (NH4)2V10O25·xH2O/GO (NVOH@GO) composites was proposed, and the charge storage mechanism was discussed. The results of characterization analysis showed that the introduction of graphene oxide (GO) not only enlarged the layer spacing and improved electrical conductivity, providing spacious channels for Zn2+ (de)intercalation and accelerating the ion diffusion dynamics, but also induced more oxygen vacancies, inhibited the dissolution of vanadium, and reduced self-discharging, offering additional and stable active sites for ion storage. The optimized NVOH@GO electrode delivered extraordinarily stable capacities of 334 mAh·g−1 after 2000 cycles at 5 A·g−1 and 238 mAh·g−1 after 10,000 cycles at 20 A·g−1. Furthermore, ex-situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman results systematically revealed the electrochemical mechanism, including a phase transition reaction and subsequent Zn2+/H2O co-(de)intercalation process. This study provides an effective strategy for expanding the interlayer spacing, inducing defect engineering, and enhancing the structural stability of vanadium-based cathodes for Zn-ion batteries and other multivalent aqueous ion batteries.

Graphical abstract

摘要

作为水系锌离子电池的正极材料, 水合钒酸铵能够抑制钒溶解、加速电化学动力学, 因此, 其结构工程研究引起了广泛的研究兴趣。本文, 我们提出了一种缺氧(NH4)2V10O25∙xH2O/GO (NVOH@GO)复合材料的制备策略, 并探讨了其电荷存储机制。表征结果表明, 氧化石墨烯(GO)的引入, 不仅扩大了层间距、提高了导电性, 为Zn2+(脱)插层提供了更宽敞的通道、加快了离子扩散动力学; 而且诱导产生了更多氧空位、抑制了钒的溶解、降低了自放电, 为离子存储提供了稳定的活性位点。优化的NVOH@GO电极在5 A·g−1循环2000次、20 A·g−1循环10,000次后, 分别具有334和238 mAh·g−1的稳定容量。此外, 非原位X射线衍射、X射线光电子能谱和拉曼结果, 系统地揭示了其电化学机制, 包括相变反应和Zn2+/H2O共(脱)插层过程。本文提供了一种具有较大层间距、丰富缺陷和较强结构稳定性的锌离子电池和其他多价水离子电池用钒基正极的制备策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang N, Chen XY, Yu M, Niu ZQ, Cheng FY, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203. https://doi.org/10.1039/c9cs00349e.

    Article  CAS  Google Scholar 

  2. Wang X, Zhang ZCY, Xi BJ, Chen WH, Jia YX, Feng JK, Xiong SL. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano. 2021;15(6):9244. https://doi.org/10.1021/acsnano.1c01389.

    Article  CAS  Google Scholar 

  3. Guo C, Yi S, Si R, Xi B, An X, Liu J, Li J, Xiong S. Advances on defect engineering of vanadium-based compounds for high-energy aqueous zinc-ion batteries. Adv Energy Mater. 2022;12(40):2202039. https://doi.org/10.1002/aenm.202202039.

    Article  CAS  Google Scholar 

  4. Wu B, Luo W, Li M, Zeng L, Mai L. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021;14(9):3174. https://doi.org/10.1007/s12274-021-3392-1.

    Article  CAS  Google Scholar 

  5. Wu HH, Zhuo F, Qiao H, Kodumudi Venkataraman L, Zheng M, Wang S, Huang H, Li B, Mao X, Zhang Q. Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energ Environ Mater. 2022;5(2):486. https://doi.org/10.1002/eem2.12237.

    Article  CAS  Google Scholar 

  6. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  7. Song M, Zhong CL. Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 2021;41(2):356. https://doi.org/10.1007/s12598-021-01858-2.

    Article  CAS  Google Scholar 

  8. Tao F, Liu Y, Ren X, Wang J, Zhou Y, Miao Y, Ren F, Wei S, Ma J. Different surface modification methods and coating materials of zinc metal anode. J Energy Chem. 2022;66:397. https://doi.org/10.1016/j.jechem.2021.08.022.

    Article  CAS  Google Scholar 

  9. Chen X, Zhang H, Liu JH, Gao Y, Cao X, Zhan C, Wang Y, Wang S, Chou SL, Dou SX, Cao D. Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 2022;50:21. https://doi.org/10.1016/j.ensm.2022.04.040.

    Article  CAS  Google Scholar 

  10. Li Y, Zhang D, Huang S, Yang HY. Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous zinc-ion batteries. Nano Energy. 2021;85:105969. https://doi.org/10.1016/j.nanoen.2021.105969.

    Article  CAS  Google Scholar 

  11. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309. https://doi.org/10.1007/s12598-020-01588-x.

    Article  CAS  Google Scholar 

  12. Geng L, Meng J, Wang X, Han C, Han K, Xiao Z, Huang M, Xu P, Zhang L, Zhou L, Mai L. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew Chem Int Ed. 2022;61(31):202206717. https://doi.org/10.1002/anie.202206717.

    Article  CAS  Google Scholar 

  13. Sui D, Wu M, Shi K, Li C, Lang J, Yang Y, Zhang X, Yan X, Chen Y. Recent progress of cathode materials for aqueous zinc-ion capacitors: carbon-based materials and beyond. Carbon. 2021;185:126. https://doi.org/10.1016/j.carbon.2021.08.084.

    Article  CAS  Google Scholar 

  14. Chen X, Wang L, Li H, Cheng F, Chen J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem. 2019;38:20. https://doi.org/10.1016/j.jechem.2018.12.023.

    Article  Google Scholar 

  15. Pam ME, Yan D, Yu J, Fang D, Guo L, Li XL, Li TC, Lu X, Ang LK, Amal R, Han Z, Yang HY. Microstructural engineering of cathode materials for advanced zinc-ion aqueous batteries. Adv Sci. 2020;8(1):2002722. https://doi.org/10.1002/advs.202002722.

    Article  CAS  Google Scholar 

  16. Li W, Han C, Gu Q, Chou SL, Wang JZ, Liu HK, Dou SX. Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries. Adv Energy Mater. 2020;10(48):2001852. https://doi.org/10.1002/aenm.202001852.

    Article  CAS  Google Scholar 

  17. Cao J, Zhang D, Yue Y, Wang X, Pakornchote T, Bovornratanaraks T, Zhang X, Wu ZS, Qin J. Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy. 2021;84:105876. https://doi.org/10.1016/j.nanoen.2021.105876.

    Article  CAS  Google Scholar 

  18. He T, Ye Y, Li H, Weng S, Zhang Q, Li M, Liu T, Cheng J, Wang X, Lu J, Wang B. Oxygen-deficient ammonium vanadate for flexible aqueous zinc batteries with high energy density and rate capability at −30 °C. Mater Today. 2021;43:53. https://doi.org/10.1016/j.mattod.2020.11.019.

    Article  CAS  Google Scholar 

  19. Sun J, Zhao Y, Liu Y, Jiang H, Huang C, Cui M, Hu T, Meng C, Zhang Y. “Three-in-One” strategy that ensures V2O5·nH2O with superior Zn2+ storage by simultaneous protonated polyaniline intercalation and encapsulation. Small Struct. 2022;3(4):2100212. https://doi.org/10.1002/sstr.202100212.

    Article  CAS  Google Scholar 

  20. Zong Q, Du W, Liu C, Yang H, Zhang Q, Zhou Z, Atif M, Alsalhi M, Cao G. Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nanomicro Lett. 2021;13(1):116. https://doi.org/10.1007/s40820-021-00641-3.

    Article  CAS  Google Scholar 

  21. Dong W, Du M, Zhang F, Zhang X, Miao Z, Li H, Sang Y, Wang JJ, Liu H, Wang S. In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(4):5034. https://doi.org/10.1021/acsami.0c19309.

    Article  CAS  Google Scholar 

  22. Li Y, Wang Z, Cai Y, Pam ME, Yang Y, Zhang D, Wang Y, Huang S. Designing advanced aqueous zinc-ion batteries: principles, strategies, and perspectives. Energ Environ Mater. 2022;5(3):823. https://doi.org/10.1002/eem2.12265.

    Article  CAS  Google Scholar 

  23. He T, Weng S, Ye Y, Cheng J, Wang X, Wang X, Wang B. Cation- deficient Zn0.3(NH4)0.3V4O10·0.91H2O for rechargeable aqueous zinc battery with superior low-temperature performance. Energy Storage Mater. 2021;38:389. https://doi.org/10.1016/j.ensm.2021.03.025.

    Article  Google Scholar 

  24. Zhang Y, Wan F, Huang S, Wang S, Niu Z, Chen J. A chemically self-charging aqueous zinc-ion battery. Nat Commun. 2020;11(1):2199. https://doi.org/10.1038/s41467-020-16039-5.

    Article  CAS  Google Scholar 

  25. Deng W, Zhou Z, Li Y, Zhang M, Yuan X, Hu J, Li Z, Li C, Li R. High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano. 2020;14(11):15776. https://doi.org/10.1021/acsnano.0c06834.

    Article  CAS  Google Scholar 

  26. Yang Y, Tang Y, Liang S, Wu Z, Fang G, Cao X, Wang C, Lin T, Pan A, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617. https://doi.org/10.1016/j.nanoen.2019.05.005.

    Article  CAS  Google Scholar 

  27. Kim J, Lee SH, Park C, Kim HS, Park JH, Chung KY, Ahn H. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: cathode material design for rechargeable aqueous zinc ion batteries. Adv Funct Mater. 2021;31(26):2100005. https://doi.org/10.1002/adfm.202100005.

    Article  CAS  Google Scholar 

  28. Su ZH, Wang RH, Huang JH, Sun R, Qin ZX, Zhang YF, Fan HS. Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries. Rare Met. 2022;41(8):2844. https://doi.org/10.1007/s12598-022-02026-w.

    Article  CAS  Google Scholar 

  29. Yu X, Hu F, Guo ZQ, Liu L, Song GH, Zhu K. High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries. Rare Met. 2022;41(1):29. https://doi.org/10.1007/s12598-021-01771-8.

    Article  CAS  Google Scholar 

  30. Lai J, Tang H, Zhu X, Wang Y. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. J Mater Chem A. 2019;7(40):23140. https://doi.org/10.1039/C9TA07822C.

    Article  CAS  Google Scholar 

  31. Wang X, Wang Y, Jiang Y, Li X, Liu Y, Xiao H, Ma Y, Huang YY, Yuan G. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries. Adv Funct Mater. 2021;31(35):2103210. https://doi.org/10.1002/adfm.202103210.

    Article  CAS  Google Scholar 

  32. Gan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Article  Google Scholar 

  33. Jiang H, Zhang Y, Pan Z, Xu L, Zheng J, Gao Z, Hu T, Meng C. Facile hydrothermal synthesis and electrochemical properties of (NH4)2V10O25·8H2O nanobelts for high-performance aqueous zinc ion batteries. Electrochim Acta. 2020;332:135506.

    Article  CAS  Google Scholar 

  34. Zhang Z, Xi B, Wang X, Ma X, Chen W, Feng J, Xiong S. Oxygen defects engineering of VO2-x·H2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202103070.

    Article  Google Scholar 

  35. Liu G, Xiao F, Zhang T, Gu Y, Li J, Guo D, Xu M, Wu N, Cao A, Liu X. In-situ growth of MoO2@N doped carbon on Mo2C-MXene for superior lithium storage. Appl Surf Sci. 2022;597:153688. https://doi.org/10.1016/j.apsusc.2022.153688.

    Article  CAS  Google Scholar 

  36. Xu L, Zhang Y, Jiang H, Zheng J, Dong X, Hu T, Meng C. Facile hydrothermal synthesis and electrochemical properties of (NH4)2V6O16 nanobelts for aqueous rechargeable zinc ion batteries. Colloids Surf Physicochem Eng Aspects. 2020;593:124621. https://doi.org/10.1016/j.colsurfa.2020.124621.

    Article  CAS  Google Scholar 

  37. Chen K, Zhang G, Xiao L, Li P, Li W, Xu Q, Xu J. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium-sulfur batteries. Small Methods. 2021;5(3):2001056. https://doi.org/10.1002/smtd.202001056.

    Article  CAS  Google Scholar 

  38. Zhang L, Hu J, Zhang B, Liu J, Wan H, Miao L, Jiang J. Suppressing cathode dissolution via guest engineering for durable aqueous zinc-ion batteries. J Mater Chem A. 2021;9(12):7631. https://doi.org/10.1039/d1ta00263e.

    Article  CAS  Google Scholar 

  39. Zhang Y, Wang Y, Lu L, Sun C, Yu DYW. Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries. J Power Sources. 2021;484:229263. https://doi.org/10.1016/j.jpowsour.2020.229263.

    Article  CAS  Google Scholar 

  40. Liu Y, Pan Z, Tian D, Hu T, Jiang H, Yang J, Sun J, Zheng J, Meng C, Zhang Y. Employing, “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries. Chem Eng J. 2020;399:125842. https://doi.org/10.1016/j.cej.2020.125842.

    Article  CAS  Google Scholar 

  41. Liu C, Neale Z, Zheng J, Jia X, Huang J, Yan M, Tian M, Wang M, Yang J, Cao G. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energ Environ Sci. 2019;12(7):2273. https://doi.org/10.1039/c9ee00956f.

    Article  CAS  Google Scholar 

  42. Liu G, Xu L, Li Y, Guo D, Wu N, Yuan C, Qin A, Cao A, Liu X. Metal-organic frameworks derived anatase/rutile heterostructures with enhanced reaction kinetics for lithium and sodium storage. Chem Eng J. 2022;430:132689. https://doi.org/10.1016/j.cej.2021.132689.

    Article  CAS  Google Scholar 

  43. Tao F, Liu Y, Ren X, Jiang A, Wei H, Zhai X, Wang F, Stock HR, Wen S, Ren F. Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives. J Alloys Compd. 2021;873:159742. https://doi.org/10.1016/j.jallcom.2021.159742.

    Article  CAS  Google Scholar 

  44. Sui D, Xu L, Zhang H, Sun Z, Kan B, Ma Y, Chen Y. A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries. Carbon. 2020;157:656. https://doi.org/10.1016/j.carbon.2019.10.106.

    Article  CAS  Google Scholar 

  45. Li J, Huang H, Cao X, Wu HH, Pan K, Zhang Q, Wu N, Liu X. Template-free fabrication of MoP nanoparticles encapsulated in N-doped hollow carbon spheres for efficient alkaline hydrogen evolution. Chem Eng J. 2021;416:127677. https://doi.org/10.1016/j.cej.2020.127677.

    Article  CAS  Google Scholar 

  46. He D, Peng Y, Ding Y, Xu X, Huang Y, Li Z, Zhang X, Hu L. Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J Power Sources. 2021;484:229284. https://doi.org/10.1016/j.jpowsour.2020.229284.

    Article  CAS  Google Scholar 

  47. Huang C, Liu S, Feng J, Wang Y, Fan Q, Kuang Q, Dong Y, Zhao Y. Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material. J Power Sources. 2021;490:229528. https://doi.org/10.1016/j.jpowsour.2021.229528.

    Article  CAS  Google Scholar 

  48. Luo H, Wang B, Wu F, Jian J, Yang K, Jin F, Cong B, Ning Y, Zhou Y, Wang D, Liu H, Dou S. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy. 2021;81:105601. https://doi.org/10.1016/j.nanoen.2020.105601.

    Article  CAS  Google Scholar 

  49. Cao H, Zheng Z, Norby P, Xiao X, Mossin S. Electrochemically induced phase transition in V3O7·H2O nanobelts/reduced graphene oxide composites for aqueous zinc-ion batteries. Small. 2021;17(24):2100558. https://doi.org/10.1002/smll.202100558.

    Article  CAS  Google Scholar 

  50. Jiang H, Zhang Y, Liu Y, Yang J, Xu L, Wang P, Gao Z, Zheng J, Meng C, Pan Z. In situ grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. J Mater Chem A. 2020;8(30):15130. https://doi.org/10.1039/d0ta05065b.

    Article  CAS  Google Scholar 

  51. Bin D, Huo W, Yuan Y, Huang J, Liu Y, Zhang Y, Dong F, Wang Y, Xia Y. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem. 2020;6(4):968. https://doi.org/10.1016/j.chempr.2020.02.001.

    Article  CAS  Google Scholar 

  52. Guo D, Yang M, Yang M, Yang T, Hu G, Liu H, Liu G, Wu N, Qin A, Liu X. Stabilized covalent interfacial coupling design of Li3V2(PO4)3 with carbon framework for boosting lithium storage kinetics. CrystEngComm. 2021;23:8506. https://doi.org/10.1039/D1CE01254A.

    Article  CAS  Google Scholar 

  53. Yu D, Wei Z, Zhang X, Zeng Y, Wang C, Chen G, Shen ZX, Du F. Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv Funct Mater. 2020;31(11):2008743. https://doi.org/10.1002/adfm.202008743.

    Article  CAS  Google Scholar 

  54. Guo D, Wang F, Yang M, Hu G, Liu G, Wu N, Qin A, Liu X. Constructing abundant oxygen vacancies in NaVPO4F@C for boosting sodium storage kinetics. Electrochim Acta. 2022;424:140695. https://doi.org/10.1016/j.electacta.2022.140695.

    Article  CAS  Google Scholar 

  55. Zhu T, Mai B, Hu P, Liu Z, Cai C, Wang X, Zhou L. Ammonium ion and structural water Co-assisted Zn2+ intercalation/de-intercalation in NH4V4O10·0.28H2O. Chin J Chem. 2021;39(7):1885.

    Article  CAS  Google Scholar 

  56. Yang W, Dong L, Yang W, Xu C, Shao G, Wang G. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods. 2019;4(1):1900670. https://doi.org/10.1002/smtd.201900670.

    Article  CAS  Google Scholar 

  57. Du Y, Wang X, Sun J. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2020;14(3):754. https://doi.org/10.1007/s12274-020-3109-x.

    Article  CAS  Google Scholar 

  58. Luo H, Wang B, Wang C, Wu F, Jin F, Cong B, Ning Y, Zhou Y, Wang D, Liu H, Dou S. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020;33:390. https://doi.org/10.1016/j.ensm.2020.08.011.

    Article  Google Scholar 

  59. Yang Z, Wang B, Chen Y, Zhou W, Li H, Zhao R, Li X, Zhang T, Bu F, Zhao Z, Li W, Chao D, Zhao D. Activating sulfur oxidation reaction via six-electron-redox mesocrystal NiS2 for sulfur-based aqueous battery. Natl Sci Rev. 2022. https://doi.org/10.1093/nsr/nwac268.

  60. Hou Z, Zhang T, Liu X, Xu Z, Liu J, Zhou W, Qian Y, Fan HJ, Chao D, Zhao D. A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci Adv. 2022;8(41):eapb8960. https://doi.org/10.1126/sciadv.abp8960.

    Article  CAS  Google Scholar 

  61. Zheng J, Liu C, Tian M, Jia X, Jahrman EP, Seidler GT, Zhang S, Liu Y, Zhang Y, Meng C, Cao G. Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy. 2020;70:104519. https://doi.org/10.1016/j.nanoen.2020.104519.

    Article  CAS  Google Scholar 

  62. Zhao J, Xu Z, Zhou Z, Xi S, Xia Y, Zhang Q, Huang L, Mei L, Jiang Y, Gao J, Zeng Z, Tan C. A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells. ACS Nano. 2021;15(6):10597. https://doi.org/10.1021/acsnano.1c03341.

    Article  CAS  Google Scholar 

  63. Zhu K, Wu T, Huang K. Understanding the dissolution and phase transformation mechanisms in aqueous Zn/α-V2O5 batteries. Chem Mater. 2021;33(11):4089. https://doi.org/10.1021/acs.chemmater.1c00715.

    Article  CAS  Google Scholar 

  64. Ding J, Gao H, Zhao K, Zheng H, Zhang H, Han L, Wang S, Wu S, Fang S, Cheng F. In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range. J Power Sources. 2021;487:229369. https://doi.org/10.1016/j.jpowsour.2020.229369.

    Article  CAS  Google Scholar 

  65. Zhu M, Wang H, Lin W, Chan D, Li H, Wang K, Tang Y, Hao T, Chen S, Malyi OI, Tang Y, Zhang Y. Amphipathic molecules endowing highly structure robust and fast kinetic vanadium-based cathode for high-performance zinc-ion batteries. Small Struct. 2022. https://doi.org/10.1002/sstr.202200016.

    Article  Google Scholar 

  66. Chen H, Chen L, Meng J, Yang Z, Wu J, Rong Y, Deng L, Shi Y. Synergistic effects in V3O7/V2O5 composite material for high capacity and long cycling life aqueous rechargeable zinc ion batteries. J Power Sources. 2020;474:228569. https://doi.org/10.1016/j.jpowsour.2020.228569.

    Article  CAS  Google Scholar 

  67. Chen Q, Jin J, Kou Z, Liao C, Liu Z, Zhou L, Wang J, Mai L. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small. 2020;16(14):2000091. https://doi.org/10.1002/smll.202000091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundations of China (Nos. 51904152 and 42002040), Natural Science Foundations of Henan Province (No. 222300420502), Key Science and Technology Program of Henan Province (No. 222102240044), and Key Scientific Research Projects in Colleges and Universities of Henan Province (No. 21B610010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Lei Guo or Xian-Ming Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3579 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GL., Zhang, T., Li, XJ. et al. Oxygen-deficient ammonium vanadate/GO composites with suppressed vanadium dissolution for ultra-stable high-rate aqueous zinc-ion batteries. Rare Met. 42, 3729–3740 (2023). https://doi.org/10.1007/s12598-023-02364-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02364-3

Keywords

Navigation