Skip to main content
Log in

Oxygen-incorporated MoS2 catalyst for remarkable enhancing piezocatalytic H2 evolution and degradation of organic pollutant

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A highly efficient piezocatalyst of oxygen-incorporated MoS2 (O-MoS2) was designed and successfully synthesized via facile modulation of hydrothermal process temperature method. Remarkably, a superior piezocatalytic H2 evolution rate of 46.1 μmol·g−1·h−1 in pure water and 921.0 μmol·g−1·h−1 in methanol solution is obtained on optimal O-MoS2-180 (with a hydrothermal process temperature of 180 °C), outperforming pristine MoS2 and most of the reported other catalysts. Moreover, piezocatalytic activity of O-MoS2 toward the degradation of organic pollutants depends on hydrothermal temperatures. The suitable temperature of O-MoS2-180 presents dramatically excellent piezocatalytic capacity compared with the pristine MoS2 for degradation of methylene blue (MB) dye. The reaction rate constant of O-MoS2-180 reaches to 54.6 × 10−3 min−1, which is nearly 18 and 4-folds in contrast with pristine MoS2 and O-MoS2-140 (with a hydrothermal process temperature of 140 °C), respectively. Simultaneously, it also manifests that O-MoS2-180 endows relatively high degradation efficiency (84.6% within 30 min) and excellent stability. Moreover, it is also demonstrated that optimal O-MoS2 can dramatically promote charge carriers transport and separation. Furthermore, our theoretical calculation results suggest that the oxygen-incorporated can modulate the surface electronic state, enhance active sites as well as optimize the hydrogen adsorption Gibbs free energy of MoS2, thus extremely boosting piezocatalytic efficiency. Ultimately, an innovative piezocatalytic mechanism is proposed to reveal and expound the relationship between piezocatalytic property and oxygen-incorporated role.

Graphical abstract

摘要

本文采用简单调控水热温度的方法成功制备了高效的氧掺入二硫化钼(O-MoS2)压电催化剂。明显地,最优压电催化剂(O-MoS2-180)在纯水和甲醇溶液中分别表现出46.1 μmol·g−1·h−1 和921.0 μmol·g−1·h−1 优异的压电催化裂解水产氢速率,优于纯的MoS2和大多数已报道的其他体系催化剂。此外,O-MoS2降解有机污染物的压电催化活性取决于水热温度。与纯的MoS2相比,合适水热温度下的压电催化剂(O-MoS2-180)呈现出优异的压电催化降解亚甲基蓝(MB)染料能力,其动力学反应速率常数达到54.6 × 10−3 min−1,分别是原始MoS2和O-MoS2-140压电催化剂的18倍和4倍。同时,O-MoS2-180具有相对较高的压电催化降解效率(30分钟内达到84.6%)以及优异的稳定性。我们进一步证明了优化的O-MoS2可以显著地促进电荷载流子的输运和分离。此外,理论计算结果表明,氧的掺入可以调节MoS2的表面电子态、增强活性位点以及优化氢吸附吉布斯自由能,从而极大地提升其压电催化效率。最后,我们提出了一种新颖的压电催化机制并阐明了其压电催化性能与氧掺入作用之间的关系。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li X, Wang W, Dong F, Zhang Z, Han L, Luo X, Huang J, Feng Z, Chen Z, Jia G, Zhang T. Recent advances in noncontact external-field-assisted photocatalysis: From fundamentals to applications. ACS Catal. 2021;11(8):4739. https://doi.org/10.1021/acscatal.0c05354.

  2. Lu X, Xie J, Chen X, Li X. Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions. Appl Catal B: Environ. 2019;252:250. https://doi.org/10.1016/j.apcatb.2019.04.012.

    Article  CAS  Google Scholar 

  3. Bai J, Shen R, Jiang Z, Zhang P, Li Y, Li X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin J Catal. 2022;43(2):359. https://doi.org/10.1016/s1872-2067(21)63883-4.

    Article  CAS  Google Scholar 

  4. Sun LJ, Su HW, Liu QQ, Hu J, Wang LL, Tang H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022;41(7):2387. https://doi.org/10.1007/s12598-022-01966-7.

    Article  CAS  Google Scholar 

  5. An CH, Kang W, Deng QB, Hu N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2021;41(2):378. https://doi.org/10.1007/s12598-021-01791-4.

    Article  CAS  Google Scholar 

  6. Yao H, Wang S, Cao Y, Chen R, Lu Z, Hu J, Xie J, Hao A. High-performance bifunctional electrocatalysts of CoFe-LDH/NiCo2O4 heterostructure supported on nickel foam for effective overall water splitting. J Alloy Compd. 2022;926:166846. https://doi.org/10.1016/j.jallcom.2022.166846.

    Article  CAS  Google Scholar 

  7. Wang J, Hu C, Shi L, Tian N, Huang H, Ou H, Zhang Y. Energy and environmental catalysis driven by stress and temperature-variation. J Mater Chem A. 2021;9(21):12400. https://doi.org/10.1039/d1ta02531g.

    Article  CAS  Google Scholar 

  8. Wang C, Hu C, Chen F, Ma T, Zhang Y, Huang H. Design strategies and effect comparisons toward efficient piezocatalytic system. Nano Energy. 2023;107:108093. https://doi.org/10.1016/j.nanoen.2022.108093.

    Article  CAS  Google Scholar 

  9. Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem Eng J. 2017;310:41. https://doi.org/10.1016/j.cej.2016.10.064.

    Article  CAS  Google Scholar 

  10. Wang Z, Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ Sci Technol. 2017;51(15):8229. https://doi.org/10.1021/acs.est.7b01466.

    Article  CAS  Google Scholar 

  11. Li Z, Meng X, Zhang Z. Recent development on MoS2-based photocatalysis: A review. J Photoch Photobio C. 2018;35:39. https://doi.org/10.1016/j.jphotochemrev.2017.12.002.

    Article  CAS  Google Scholar 

  12. Wu MJ, Sun YG, Chang WE, Lee JT. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy. 2018;46:372. https://doi.org/10.1016/j.nanoen.2018.02.010.

    Article  CAS  Google Scholar 

  13. Liang Z, Yan CF, Rtimi S, Bandara J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl Catal B: Environ. 2019;241:256. https://doi.org/10.1016/j.apcatb.2018.09.028.

    Article  CAS  Google Scholar 

  14. Lan S, Feng J, Xiong Y, Tian S, Liu S, Kong L. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environ Sci Technol. 2017;51(11):6560. https://doi.org/10.1021/acs.est.6b06426.

    Article  CAS  Google Scholar 

  15. Ning X, Hao A, Cao Y, Hu J, Xie J, Jia D. Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism. J Colloid Interf Sci. 2020;577:290. https://doi.org/10.1016/j.jcis.2020.05.082.

    Article  CAS  Google Scholar 

  16. Liu Z, Zheng Y, Zhang S, Fu J, Li Y, Zhang Y, Ye W. (1–x)Bi0.5Na0.5TiO3-xBiFeO3 solid solutions with enhanced piezocatalytic dye degradation. Sep Purif Technol. 2022;290:120831. https://doi.org/10.1016/j.seppur.2022.120831.

    Article  CAS  Google Scholar 

  17. Hao A, Ning X, Cao Y, Xie J, Jia D. Boosting the piezocatalytic performance of Bi2WO6 nanosheets towards the degradation of organic pollutants. Mater Chem Front. 2020;4(7):2096. https://doi.org/10.1039/d0qm00179a.

    Article  CAS  Google Scholar 

  18. Ning X, Hao A, Cao Y, Lv N, Jia D. Boosting piezocatalytic performance of Ag decorated ZnO by piezo-electrochemical synergistic coupling strategy. Appl Surf Sci. 2021;566:150730. https://doi.org/10.1016/j.apsusc.2021.150730.

    Article  CAS  Google Scholar 

  19. Li S, Zhao Z, Yu D, Zhao JZ, Su Y, Liu Y, Lin Y, Liu W, Xu H, Zhang Z. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: understanding the piezocatalytic effect. Nano Energy. 2019;66:104083. https://doi.org/10.1016/j.nanoen.2019.104083.

    Article  CAS  Google Scholar 

  20. Su Y, Zhang L, Wang W, Li X, Zhang Y, Shao D. Enhanced H2 evolution based on ultrasound-assisted piezo-catalysis of modified MoS2. J Mater Chem A. 2018;6(25):11909. https://doi.org/10.1039/c8ta03208d.

    Article  CAS  Google Scholar 

  21. Lin JH, Tsao YH, Wu MH, Chou TM, Lin ZH, Wu JM. Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy. 2017;31:575. https://doi.org/10.1016/j.nanoen.2016.12.013.

    Article  CAS  Google Scholar 

  22. Chou TM, Chan SW, Lin YJ, Yang PK, Liu CC, Lin YJ, Wu JM, Lee JT, Lin ZH. A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy. 2019;57:14. https://doi.org/10.1016/j.nanoen.2018.12.006.

    Article  CAS  Google Scholar 

  23. Ren T, Tian W, Shen Q, Yuan Z, Chen D, Li N, Lu J. Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering. Nano Energy. 2021;90:106527. https://doi.org/10.1016/j.nanoen.2021.106527.

    Article  CAS  Google Scholar 

  24. Yein WT, Wang Q, Liu Y, Li Y, Jian J, Wu X. Piezo-potential induced molecular oxygen activation of defect-rich MoS2 ultrathin nanosheets for organic dye degradation in dark. J Environ Chem Eng. 2020;8(1):103626. https://doi.org/10.1016/j.jece.2019.103626.

    Article  CAS  Google Scholar 

  25. Li S, Ning X, Hao P, Cao Y, Xie J, Hu J, Lu Z, Hao A. Defect-rich MoS2 piezocatalyst: efficient boosting piezocatalytic activation of PMS activity towards degradation organic pollutant. Dyes Pigments. 2022;206:110678. https://doi.org/10.1016/j.dyepig.2022.110678.

    Article  CAS  Google Scholar 

  26. Jia S, Su Y, Zhang B, Zhao Z, Li S, Zhang Y, Li P, Xu M, Ren R. Few-layer MoS2 nanosheet-coated KNbO3 nanowire heterostructures: piezo-photocatalytic effect enhanced hydrogen production and organic pollutant degradation. Nanoscale. 2019;11(16):7690. https://doi.org/10.1039/c9nr00246d.

    Article  CAS  Google Scholar 

  27. Pan M, Liu S, Chew JW. Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst. Nano Energy. 2020;68:104366. https://doi.org/10.1016/j.nanoen.2019.104366.

    Article  CAS  Google Scholar 

  28. Ma W, Yao B, Zhang W, He Y, Yu Y, Niu J. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets. Chem Eng J. 2021;415:129000. https://doi.org/10.1016/j.cej.2021.129000.

    Article  CAS  Google Scholar 

  29. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc. 2013;135(47):17881. https://doi.org/10.1021/ja408329q.

    Article  CAS  Google Scholar 

  30. Zhou J, Fang G, Pan A, Liang S. Oxygen-incorporated MoS2 nanosheets with expanded interlayers for hydrogen evolution reaction and pseudocapacitor applications. ACS Appl Mater Inter. 2016;8(49):33681. https://doi.org/10.1021/acsami.6b11811.

    Article  CAS  Google Scholar 

  31. Liu A, Zhao L, Zhang J, Lin L, Wu H. Solvent-assisted oxygen incorporation of vertically aligned MoS2 ultrathin nanosheets decorated on reduced graphene oxide for improved electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces. 2016;8(38):25210. https://doi.org/10.1021/acsami.6b06031.

    Article  CAS  Google Scholar 

  32. Zhang Y, Tao H, Li T, Du S, Li J, Zhang Y, Yang X. Vertically oxygen-incorporated MoS2 nanosheets coated on carbon fibers for sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(41):35206. https://doi.org/10.1021/acsami.8b12079.

    Article  CAS  Google Scholar 

  33. Lee S, Hwang J, Kim D, Ahn H. Oxygen incorporated in 1T/2H hybrid MoS2 nanoflowers prepared from molybdenum blue solution for asymmetric supercapacitor applications. Chem Eng J. 2021;419:129701. https://doi.org/10.1016/j.cej.2021.129701.

    Article  CAS  Google Scholar 

  34. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  36. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104. https://doi.org/10.1063/1.3382344.

    Article  CAS  Google Scholar 

  37. Gao MR, Chan MK, Sun Y. Edge-terminated molybdenum disulfide with a 94-Å interlayer spacing for electrochemical hydrogen production. Nat Commun. 2015;6:7493. https://doi.org/10.1038/ncomms8493.

    Article  Google Scholar 

  38. Lei R, Gao F, Yuan J, Jiang C, Fu X, Feng W, Liu P. Free layer-dependent piezoelectricity of oxygen-doped MoS2 for the enhanced piezocatalytic hydrogen evolution from pure water. Appl Surf Sci. 2022;576:151851. https://doi.org/10.1016/j.apsusc.2021.151851.

    Article  CAS  Google Scholar 

  39. Sun T, Li Z, Liu X, Ma L, Wang J, Yang S. Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors. J Power Sources. 2017;352:135. https://doi.org/10.1016/j.jpowsour.2017.03.123.

    Article  CAS  Google Scholar 

  40. Liu D, Xu W, Liu Q, He Q, Haleem YA, Wang C, Xiang T, Zou C, Chu W, Zhong J, Niu Z, Song L. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016;9(7):2079. https://doi.org/10.1007/s12274-016-1098-6.

    Article  CAS  Google Scholar 

  41. Tan X, Ding W, Jiang Z, Sun L, Huang Y. Reinventing MoS2 co-catalytic Fenton reaction: Oxygen-incorporation mediating surface superoxide radical generation. Nano Res. 2021;15(3):1973. https://doi.org/10.1007/s12274-021-3848-3.

    Article  CAS  Google Scholar 

  42. Cao H, Bai Z, Li Y, Xiao Z, Zhang X, Li G. Solvothermal synthesis of defect-rich mixed 1T–2H MoS2 nanoflowers for enhanced hydrodesulfurization. ACS Sustain Chem Eng. 2020;8(19):7343. https://doi.org/10.1021/acssuschemeng.0c00736.

    Article  CAS  Google Scholar 

  43. Yuan Y, Guo RT, Hong LF, Ji XY, Li ZS, Lin ZD, Pan WG. Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: a review. Colloid Surface A. 2021;611:125836. https://doi.org/10.1016/j.colsurfa.2020.125836.

    Article  CAS  Google Scholar 

  44. Deng Y, Liu Z, Wang A, Sun D, Chen Y, Yang L, Pang J, Li H, Zhou W. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy. 2019;62:338. https://doi.org/10.1016/j.nanoen.2019.05.036.

    Article  CAS  Google Scholar 

  45. Wang L, Xie L, Zhao W, Liu S, Zhao Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem Eng J. 2021;405:127028. https://doi.org/10.1016/j.cej.2020.127028.

    Article  CAS  Google Scholar 

  46. Tu S, Guo Y, Zhang Y, Hu C, Zhang T, Ma T, Huang H. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Adv Funct Mater. 2020;30(48):2005158. https://doi.org/10.1002/adfm.202005158.

    Article  CAS  Google Scholar 

  47. Xue X, Zang W, Deng P, Wang Q, Xing L, Zhang Y, Wang ZL. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy. 2015;13:414. https://doi.org/10.1016/j.nanoen.2015.02.029.

    Article  CAS  Google Scholar 

  48. Pan L, Sun S, Chen Y, Wang P, Wang J, Zhang X, Zou JJ, Wang ZL. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv Energy Mater. 2020;10(15):2000214. https://doi.org/10.1002/aenm.202000214.

    Article  CAS  Google Scholar 

  49. Wang M, Wang B, Huang F, Lin Z. Enabling PIEZO potential in PIEZO electric semiconductors for enhanced catalytic activities. Angew Chem Int Edit. 2019;58(23):7526. https://doi.org/10.1002/anie.201811709.

    Article  CAS  Google Scholar 

  50. Wang K, Han C, Li J, Qiu J, Sunarso J, Liu S. The mechanism of piezocatalysis: Energy band theory or screening charge effect? Angew Chem Int Edit. 2022;61(6):202110429. https://doi.org/10.1002/anie.202110429.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Talent Program of Tianshan Youth of Xinjiang Autonomous Region (No. 2020Q070) and the National Natural Science Foundation of China (No. 12064042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dian-Zeng Jia or Ai-Ze Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 225 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, XE., Jia, DZ., Li, SH. et al. Oxygen-incorporated MoS2 catalyst for remarkable enhancing piezocatalytic H2 evolution and degradation of organic pollutant. Rare Met. 42, 3034–3045 (2023). https://doi.org/10.1007/s12598-023-02363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02363-4

Keywords

Navigation