Skip to main content

Advertisement

Log in

Interfacial active sites on Co-Co2C@carbon heterostructure for enhanced catalytic hydrogen generation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Designing catalysts with capable dual-active sites to drive catalytic hydrogen generation is necessary for the future hydrogen economy. Herein, the interfacial active sites consisting of Co and Co-C on Co-Co2C@carbon heterostructure are designed through annealing and high-pressure carbonization. The operating temperature during the high-pressure carbonization under a CO-reducing environment is responsible for the construction and regulation of Co-Co2C@C heterostructure. The optimal catalyst has a high turnover frequency (TOF) of 33.1 min−1 and low activation energy (Ea) of 27.3 kJ·mol–1 during the hydrolysis of NH3BH3. The catalytic stability of Co-Co2C@C has no dramatic deterioration even after 5 cyclic usages. The interfacial active sites and the carbon on the catalyst surface enhance hydrogen generation kinetics and catalytic stability. The construction of interfacial active sites in Co-Co2C@C prompts the dissociation of reactants (NH3BH3 and H2O molecules), leading to an enhanced catalytic hydrogen generation from NH3BH3 hydrolysis (Co activates NH3BH3 and Co-C activates H2O). The construction of hetero-structural catalysts provides theoretical direction for the rational design of advanced transition metal carbide materials in the field of energy catalysis and conversion.

Graphical abstract

摘要

设计具有双活性位点的催化剂驱动催化制氢对未来的“氢经济”发展至关重要。基于此,通过煅烧和高压碳化的策略设计了具有Co和Co–C界面活性位点的Co-Co2C@Carbon异质结构催化剂。高压碳化是在CO还原气体存在的情况下进行的,其中不同的高压碳化温度在构建Co-Co2C@carbon异质结构的过程中有着重要的作用。设计的最佳催化剂在NH3BH3水解制氢过程中表现出优异的催化活性 (TOF = 33.1 min−1) 和较低的活化能 (Ea = 27.3 kJ mol−1)。而且Co-Co2C@C的催化活性在经过5圈循环之后没有剧烈的下降。催化剂中界面活性位点和碳的存在增强了催化产氢动力学和稳定性。Co-Co2C@C中界面活性位点的构建加快了NH3BH3和H2O分子的吸附和解离,进而促进NH3BH3催化制氢活性,其中Co活化NH3BH3,Co–C活化H2O。该异质结构的构建为能源催化转化领域合理设计高效的过渡金属碳化物催化剂提供了理论指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding Q-W, Luo Q, Lin L, Fu XP, Wang LS, Yue GH, Lin J, Xie QS, Peng DL. Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation. Rare Met. 2022;41(8):2595. https://doi.org/10.1007/s12598-022-01997-0.

    Article  CAS  Google Scholar 

  2. Guang HL, Zhu SL, Liang YQ, Wu SL, Li ZY, Luo SY, Cui ZD, Inoue A. Highly efficient nanoporous CoBP electrocatalyst for hydrogen evolution reaction. Rare Met. 2021;40(5):1031. https://doi.org/10.1007/s12598-020-01697-7.

    Article  CAS  Google Scholar 

  3. Qin PL, Zeng K, Lan ZQ, Huang XT, Liu HZ, Guo J. Enhanced dydrogen storage properties of Mg-Al alloy catalyzed with reduced graphene oxide supported with LaClO. Chin J Rare Met. 2020;44(5):499. https://doi.org/10.13373/j.cnki.cjrm.XY20030007.html.

    Article  Google Scholar 

  4. Shen R, Liu Y, Wen H, Liu T, Peng Z, Wu X, Ge X, Mehdi S, Cao H, Liang E, Jiang J, Li B. Engineering VO–Ti ensemble to boost the activity of Ru towards water dissociation for catalytic hydrogen generation. Appl Catal B Environ. 2022;306:121100. https://doi.org/10.1016/j.apcatb.2022.121100.

    Article  CAS  Google Scholar 

  5. Zhao DL, Han ZG, Huo TT, Yuan ZM, Qi Y, Zhang YH. Advances in activation property of hydrogen storage for TiFe-based alloy. Chin J Rare Met. 2020;44(4):337. https://doi.org/10.13373/j.cnki.cjrm.xy19120004.

    Article  CAS  Google Scholar 

  6. Lin HJ, Lu YS, Zhang LT, Liu HZ, Edalati K, Révész A. Recent advances in metastable alloys for hydrogen storage: a review. Rare Met. 2022;41(6):1797. https://doi.org/10.1007/s12598-021-01917-8.

    Article  CAS  Google Scholar 

  7. Zhang H, Zhang K, Ashraf S, Fan Y, Guan S, Wu X, Liu Y, Liu B, Li B. Polar O–Co–P surface for bimolecular activation in catalytic hydrogen generation. Energy Environ Mater. 2022. https://doi.org/10.1002/eem2.12273.

    Article  Google Scholar 

  8. Zhang H, Fan Y, Liu B, Liu Y, Ashraf S, Wu X, Han G, Gao J, Li B. Birdcage-type CoOx-carbon catalyst derived from metal–organic frameworks for enhanced hydrogen generation. ACS Sustain Chem Eng. 2019;7(11):9782. https://doi.org/10.1021/acssuschemeng.8b06660.

    Article  CAS  Google Scholar 

  9. Liu Y, Chen N, Li W, Sun M, Wu T, Huang B, Yong X, Zhang Q, Gu L, Song H, Bauer R, Tse JS, Zang S, Yang B, Lu S. Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat. 2022;3:249. https://doi.org/10.1002/smm2.1067.

    Article  CAS  Google Scholar 

  10. Cai J, Ding J, Wei D, Xie X, Li B, Lu S, Zhang J, Liu Y, Cai Q, Zang S. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction. Adv Energy Mater. 2021;11(26):2100141. https://doi.org/10.1002/aenm.202100141.

    Article  CAS  Google Scholar 

  11. Wang L, Li H, Zhang W, Zhao X, Qiu J, Li A, Zheng X, Hu Z, Si R, Zeng J. Supported rhodium catalysts for ammonia–borane hydrolysis: dependence of the catalytic activity on the highest occupied state of the single rhodium atoms. Angew Chem Int Ed. 2017;56(17):4712. https://doi.org/10.1002/anie.201701089.

    Article  CAS  Google Scholar 

  12. Xu H, Cheng D. First-principles-aided thermodynamic modeling of transition-metal heterogeneous catalysts: a review. Green Energy Environ. 2020;5(3):286. https://doi.org/10.1016/j.gee.2020.07.006.

    Article  Google Scholar 

  13. Yoo JM, Shin H, Chung DY, Sung YE. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc Chem Res. 2022;55(9):1278. https://doi.org/10.1021/acs.accounts.1c00727.

    Article  CAS  Google Scholar 

  14. Wang H. Nanostructure@ metal–organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022;15(4):2834. https://doi.org/10.1007/s12274-021-3984-9.

    Article  CAS  Google Scholar 

  15. Zang D, Gao XJ, Li L, Wei Y, Wang H. Confined interface engineering of self-supported Cu@ N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022. https://doi.org/10.1007/s12274-022-4698-3.

    Article  Google Scholar 

  16. Zhang C, Xie C, Gao Y, Tao X, Ding C, Fan F, Jiang HL. Charge separation by creating band bending in metal–organic frameworks for improved photocatalytic hydrogen evolution. Angew Chem Int Ed. 2022;61(28):e202204108. https://doi.org/10.1002/anie.202204108.

    Article  CAS  Google Scholar 

  17. Xu W, Li W, Wen H, Ding J, Liu Y, Li W, Li B. Metal/metal–organic framework interfacial ensemble-induced dual site catalysis towards hydrogen generation. Appl Catal B Environ. 2021;286:119946. https://doi.org/10.1016/j.apcatb.2021.119946.

    Article  CAS  Google Scholar 

  18. Liu Y, Han G, Zhang X, Xing C, Du C, Cao H, Li B. Co–Co3O4@carbon core–shells derived from metal–organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Res. 2017;10(9):3035. https://doi.org/10.1007/s12274-017-1519-1.

    Article  CAS  Google Scholar 

  19. Xing C, Liu Y, Su Y, Chen Y, Hao S, Wu X, Wang X, Cao H, Li B. Structural evolution of Co-based metal organic frameworks in pyrolysis for synthesis of core–shells on nanosheets: Co@CoOx@Carbon-rGO composites for enhanced hydrogen generation activity. ACS Appl Mater Interfaces. 2016;8(24):15430. https://doi.org/10.1021/acsami.6b04058.

    Article  CAS  Google Scholar 

  20. Dong W, Liu J, Zhu H, Ding Y, Pei Y, Liu J, Du H, Jiang M, Liu T, Su H, Li W. Co–Co2C and Co–Co2C/AC catalysts for hydroformylation of 1-hexene under low pressure: experimental and theoretical studies. J Phys Chem C. 2014;118(33):19114. https://doi.org/10.1021/jp504215y.

    Article  CAS  Google Scholar 

  21. Guo S, Liu G, Zhang Y, Liu Y. Oxygen vacancies boosted Co-Co2C catalysts for higher alcohols synthesis from syngas. Appl Surf Sci. 2022;576:151846. https://doi.org/10.1016/j.apsusc.2021.151846.

    Article  CAS  Google Scholar 

  22. Lin T, Yu F, An Y, Qin T, Li L, Gong K, Zhong L, Sun Y. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Acc Chem Res. 2021;54(8):1961. https://doi.org/10.1021/acs.accounts.0c00883.

    Article  CAS  Google Scholar 

  23. Zhang S, Liu X, Shao Z, Wang H, Sun Y. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: studies on support effects and mechanism. J Catal. 2020;382:86. https://doi.org/10.1016/j.jcat.2019.11.038.

    Article  CAS  Google Scholar 

  24. Song XZ, Wang H, Li Z, Meng YL, Tan Z, Zhu M. Double-shelled carbon nanocages grafted with carbon nanotubes embedding Co nanoparticles for enhanced hydrogen evolution electrocatalysis. Chem Commun. 2021;57:3022. https://doi.org/10.1039/D0CC08416F.

    Article  CAS  Google Scholar 

  25. Chen D, Yang W, Jiao L, Li L, Yu S, Jiang H. Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering: the roles of electron transfer and adsorption energy. Adv Mater. 2020;32(30):2000041. https://doi.org/10.1002/adma.202000041.

    Article  CAS  Google Scholar 

  26. Xu M, Li D, Sun K, Jiao L, Xie C, Ding C, Jiang H. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew Chem Int Ed. 2021;60(30):16372. https://doi.org/10.1002/anie.202104219.

    Article  CAS  Google Scholar 

  27. Xu K, Ma C, Yan H, Gu H, Wang WW, Li SQ, Meng QL, Shao WP, Ding GH, Wang FR, Jia CJ. Catalytically efficient Ni–NiOx–Y2O3 interface for medium temperature water–gas shift reaction. Nat Commun. 2022;13:2443. https://doi.org/10.1038/s41467-022-30138-5.

  28. Su L, Gong D, Yao N, Li Y, Li Z, Luo W. Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv Funct Mater. 2021;31:2106156. https://doi.org/10.1002/adfm.202106156.

    Article  CAS  Google Scholar 

  29. Wang B, Liu F, Guan W, Wang A, Zhang T. Promoting the effect of Au on the selective hydrogenolysis of glycerol to 1,3-propanediol over the Pt/WOx/Al2O3 catalyst. ACS Sustain Chem Eng. 2021;9(16):5705. https://doi.org/10.1021/acssuschemeng.1c00880.

    Article  CAS  Google Scholar 

  30. Lin Y, Yang L, Jiang H, Zhang Y, Cao D, Wu C, Zhang G, Jiang J, Song L. Boosted reactivity of ammonia borane dehydrogenation over Ni/Ni2P heterostructure. J Phys Chem Lett. 2019;10(5):1048. https://doi.org/10.1021/acs.jpclett.9b00122.

    Article  CAS  Google Scholar 

  31. Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R. Co/CoP heterojunction on hierarchically ordered porous carbon as a highly efficient electrocatalyst for hydrogen and oxygen evolution. Adv Energy Mater. 2021;11(42):2102134. https://doi.org/10.1002/aenm.202102134.

    Article  CAS  Google Scholar 

  32. Cheng S, Zheng H, Shen C, Jiang B, Liu F, Li A. Hierarchical iron phosphides composite confined in ultrathin carbon layer as effective heterogeneous electro-fenton catalyst with prominent stability and catalytic activity. Adv Funct Mater. 2021;31(48):2106311. https://doi.org/10.1002/adfm.202106311.

    Article  CAS  Google Scholar 

  33. Jin S, Shao W, Chen S, Li L, Shang S, Zhao Y, Zhang X, Xie Y. Ultrathin in-plane heterostructures for efficient CO2 chemical fixation. Angew Chem Int Ed. 2022;61(3):e202113411. https://doi.org/10.1002/anie.202113411.

    Article  CAS  Google Scholar 

  34. Wang L, Tang G, Liu S, Dong H, Liu Q, Sun J, Tang H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022;428:131338. https://doi.org/10.1016/j.cej.2021.131338.

    Article  CAS  Google Scholar 

  35. Wang M, Wang Y, Mao SS, Shen S. Transition-metal alloy electrocatalysts with active sites modulated by metal-carbide heterophases for efficient oxygen evolution. Nano Energy. 2021;88:106216. https://doi.org/10.1016/j.nanoen.2021.106216.

    Article  CAS  Google Scholar 

  36. Chen L, Song XL, Ren JT, Yuan ZY. Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Appl Catal B Environ. 2022;315:121546. https://doi.org/10.1016/j.apcatb.2022.121546.

    Article  CAS  Google Scholar 

  37. Su P, Zhang J, Xiao K, Zhao S, Djellabi R, Li X, Yang B, Zhao X. C3N4 modified with single layer ZIF67 nanoparticles for efficient photocatalytic degradation of organic pollutants under visible light. Chin J Catal. 2020;41:1894. https://doi.org/10.1016/S1872-2067(20)63620-8.

    Article  CAS  Google Scholar 

  38. Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew Chem Int Ed. 2015;127(37):11039. https://doi.org/10.1002/ange.201504242.

    Article  Google Scholar 

  39. Zheng J, Cai J, Jiang F, Xu Y, Liu X. Investigation of the highly tunable selectivity to linear α-olefins in Fischer–Tropsch synthesis over silica supported Co and CoMn catalysts by carburization–reduction pretreatment. Catal Sci Technol. 2017;7:4736. https://doi.org/10.1039/C7CY01764B.

    Article  CAS  Google Scholar 

  40. Guan S, Guo Y, Zhang H, Liu X, Fan Y, Liu B. The alloy-oxide interfacial ensemble effect of a multilayer core–shell nanomotor for hydrogen generation from ammonia borane. Sustain Energy Fuels. 2022;6:1753. https://doi.org/10.1039/d1se01994e.

    Article  CAS  Google Scholar 

  41. Yang X, Li Q, Li L, Lin J, Yang X, Yu C, Liu Z, Fang Y, Huang Y, Tang C. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. J Power Sources. 2019;431:135. https://doi.org/10.1016/j.jpowsour.2019.05.038.

    Article  CAS  Google Scholar 

  42. Ren X, Wei S, Wang Q, Shi L, Wang XS, Wei Y, Yang G, Philo D, Ichihara F, Ye J. Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. Appl Catal B Environ. 2021;286:119924. https://doi.org/10.1016/j.apcatb.2021.119924.

    Article  CAS  Google Scholar 

  43. Zhang S, Gao G, Hao J, Wang M, Zhu H, Lu S, Duan F, Dong W, Du M, Zhao Y. Low-electronegativity vanadium substitution in cobalt carbide induced enhanced electron transfer for efficient overall water splitting. ACS Appl Mater Interfaces. 2019;11(46):43261. https://doi.org/10.1021/acsami.9b16390.

    Article  CAS  Google Scholar 

  44. Song H, Yu J, Tang Z, Yang B, Lu S. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv Energy Mater. 2022;12(14):2102573. https://doi.org/10.1002/aenm.202102573.

    Article  CAS  Google Scholar 

  45. Ocal C, Ferrer S. The strong metal-support interaction (SMSI) in Pt–TiO2 model catalysts. A new CO adsorption state on Pt–Ti atoms. J Chem Phys. 1986;84:6474. https://doi.org/10.1063/1.450743.

    Article  CAS  Google Scholar 

  46. Qie Y, Liu Y, Kong F, Yang Z, Yang H. High coercivity cobalt carbide nanoparticles as electrocatalysts for hydrogen evolution reaction. Nano Res. 2022;15:3901. https://doi.org/10.1007/s12274-021-4036-1.

    Article  CAS  Google Scholar 

  47. Kawashima K, Shin K, Wygant BR, Kim JH, Cao CL, Lin J, Lin J, Son YJ, Liu Y, Henkelman G, Mullins CB. Cobalt metal–cobalt carbide composite microspheres for water reduction electrocatalysis. ACS Appl Energy Mater. 2020;3(4):3909. https://doi.org/10.1021/acsaem.0c00321.

    Article  CAS  Google Scholar 

  48. Li W, Zhao Y, Liu Y, Sun M, Waterhouse GIN, Huang B, Zhang K, Zhang T, Lu S. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew Chem Int Ed. 2021;60(6):3290. https://doi.org/10.1002/anie.202013985.

    Article  CAS  Google Scholar 

  49. Liu Y, Wen H, Zhou D, Huang X, Wu X, Jiang J, Guo X, Li B. Tuning surface d charge of Ni-Ru alloys for unprecedented catalytic activity towards hydrogen generation from ammonia borane hydrolysis. Appl Catal B Environ. 2021;291:120094. https://doi.org/10.1016/j.apcatb.2021.120094.

    Article  CAS  Google Scholar 

  50. Mo B, Li S, Wen H, Zhang H, Zhang H, Wu J, Li B, Hou H. Functional group regulated Ni/Ti3C2Tx (Tx= F, –OH) holding bimolecular activation tunnel for enhanced ammonia borane hydrolysis. ACS Appl Mater Interfaces. 2022;14(14):16320. https://doi.org/10.1021/acsami.2c02594.

    Article  CAS  Google Scholar 

  51. Guan S, An L, Ashraf S, Zhang L, Liu B, Fan Y, Li B. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl Catal B Environ. 2020;269:118775. https://doi.org/10.1016/j.apcatb.2020.118775.

    Article  CAS  Google Scholar 

  52. Zhang H, Liu Y, Wei H, Wang C, Liu T, Wu X, Ashraf S, Mehdi S, Guan S, Fan Y, Yue X, Liu B, Zhang Y, Cao H, Li B. Atomic-bridge structure in B-Co-P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation. Appl Catal B Environ. 2022;314:121495. https://doi.org/10.1016/j.apcatb.2022.121495.

    Article  CAS  Google Scholar 

  53. Guan S, Liu Y, Zhang H, Wei H, Liu T, Wu X, Wen H, Shen R, Mehdi S, Ge X, Wang C, Liu B, Liang E, Fan Y, Li B. Atomic interface-exciting catalysis on cobalt nitride-oxide for accelerating hydrogen generation. Small. 2022;18(22):2107417. https://doi.org/10.1002/smll.202107417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52071135, 51871090 and U1804135), the Fundamental Research Funds for the Universities of Henan Province (Nos. NSFRF220201 and NSFRF200402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Yun Liu or Yan-Ping Fan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 24951 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HH., Ren, YB., Yuan, ZL. et al. Interfacial active sites on Co-Co2C@carbon heterostructure for enhanced catalytic hydrogen generation. Rare Met. 42, 1935–1945 (2023). https://doi.org/10.1007/s12598-022-02224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02224-6

Keywords

Navigation