Skip to main content
Log in

Thermal insulation performance of 7YSZ TBCs adjusted via Al modification

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

ZrO2-7 wt% Y2O3 (7YSZ) thermal barrier coatings (TBCs) with three different structures were prepared by atmospheric plasma spraying (APS), electron beam physical vapor deposition (EB-PVD) and plasma spray-physical vapor deposition (PS-PVD). Al films were deposited onto the top 7YSZ TBCs by magnetron sputtering, and the Al-deposited 7YSZ TBCs were subjected to vacuum heat treatment. The effects of Al modification on the thermal insulation properties of 7YSZ TBCs were investigated. The results showed that Al modification could significantly improve the thermal insulation of 7YSZ TBCs at 1000 °C. Moreover, the maximum improvement of thermal insulation for PS-PVD 7YSZ TBCs was approximately 100 °C, but the improvement decreased with increasing temperature. This is mainly because with increasing temperature, the rate of radiation heat transfer increases, and the effects of convection heat transfer and thermal conductivity on thermal insulation are weakened. At the same temperature, Al modification of PS-PVD 7YSZ TBCs provides better temperature insulation than those of APS 7YSZ TBCs and EB-PVD 7YSZ TBCs because of its wider and deeper inter-columnar gaps. When the temperature was 1200 °C, Al modification still caused a good insulation effect in PS-PVD 7YSZ TBCs; the improvement was approximately 50 °C, but in APS and EB-PVD 7YSZ TBCs, the insulation effect disappeared.

Graphical Abstract

摘要

采用大气等离子喷涂(APS)、电子束物理气相沉积(EB-PVD)和等离子喷涂-物理气相沉积(PS-PVD)技术制备了三种不同结构的ZrO2-7wt% Y2O3 (7YSZ)热障涂层。采用磁控溅射法在7YSZ 热障涂层顶部沉积铝膜,并对涂层进行真空热处理。研究了铝改性对7YSZ 热障涂层隔热性能的影响。结果表明,当温度为1000 °C时,Al改性可显著提高7YSZ 热障涂层的隔热性能。且对PS-PVD 7YSZ 热障涂层隔温提升最大,达到近100 °C,但随着温度的升高,隔温减小。这主要是因为随着温度的升高,辐射换热比例增加,对流换热和导热对隔温的影响减弱。在相同的温度下,PS-PVD 7YSZ 热障涂层的铝改性比APS 7YSZ和EB-PVD 7 YSZ 热障涂层提供更好的隔温,因为其柱间间隙更宽更深。当温度为1200 °C时,Al改性对PS-PVD 7YSZ热障涂层仍有良好的隔温作用,隔温大约50 °C,但是对APS和EB-PVD 7YSZ 热障涂层,则没有起到隔温作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou FF, Wang Y, Liu M, Deng CM, Zhang XF. Thermo-physical and thermal insulation properties of multi-scale nanostructured thermal barrier coatings using as-prepared t′-8YSZ feedstocks. Ceram Int. 2019;45(18):24096. https://doi.org/10.1016/j.ceramint.2019.08.117.

    Article  CAS  Google Scholar 

  2. Gao LH, Guo HB, Wei LL, Li CY, Xu HB. Microstructure, thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition. Surf Coat Technol. 2015;276:424. https://doi.org/10.1016/j.surfcoat.2015.06.033.

    Article  CAS  Google Scholar 

  3. Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 2003;33(1):383. https://doi.org/10.1146/annurev.matsci.33.011403.113718.

    Article  CAS  Google Scholar 

  4. Tsai PC, Tseng CF, Yang CW, Kuo IC, Chou YL, Lee JW. Thermal cyclic oxidation performance of plasma sprayed zirconia thermal barrier coatings with modified high velocity oxygen fuel sprayed bond coatings. Surf Coat Technol. 2013;228:S11. https://doi.org/10.1016/j.surfcoat.2012.10.004.

    Article  CAS  Google Scholar 

  5. Chang F, Zhou KS, Tong X, Xu LP, Zhang XF, Liu M. Microstructure and thermal shock resistance of the peg-nail structured TBCs treated by selective laser modification. Appl Surf Sci. 2014;317:598. https://doi.org/10.1016/j.apsusc.2014.08.084.

    Article  CAS  Google Scholar 

  6. Zhou FF, Wang Y, Cui ZY, Wang L, Gou JF, Zhang QW, Wang CH. Thermal cycling behavior of nanostructured 8YSZ, SZ/8YSZ and 8CSZ/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying. Ceram Int. 2017;43(5):4102. https://doi.org/10.1016/j.ceramint.2016.12.014.

    Article  CAS  Google Scholar 

  7. Shirvani K, Mastali S, Rashidghamat A, Abdollahpour H. The effect of silicon on thermal shock performance of aluminide-thermal barrier coatings. Corros Sci. 2013;75:142. https://doi.org/10.1016/j.corsci.2013.05.025.

    Article  CAS  Google Scholar 

  8. Cai CY, Chang S, Zhou YC, Yang L, Zhou GW, Wang YG. Microstructure characteristics of EB-PVD YSZ thermal barrier coatings corroded by molten volcanic ash. Surf Coat Technol. 2016;286:49. https://doi.org/10.1016/j.surfcoat.2015.12.003.

    Article  CAS  Google Scholar 

  9. Renteria AF, Saruhan B. Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings. J Eur Ceram Soc. 2006;26(12):2249. https://doi.org/10.1016/j.jeurceramsoc.2005.04.027.

    Article  CAS  Google Scholar 

  10. Zhang XF, Zhou KS, Deng CM, Liu M, Deng ZQ, Deng CG, Song JB. Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition. J Eur Ceram Soc. 2016;36(3):697. https://doi.org/10.1016/j.jeurceramsoc.2015.10.041.

    Article  CAS  Google Scholar 

  11. Rezanka S, Mauer G, Vaßen R. Improved thermal cycling durability of thermal barrier coatings manufactured by PS-PVD. J Therm Spray Technol. 2013;23(1–2):182. https://doi.org/10.1007/s11666-013-9971-2.

    Article  CAS  Google Scholar 

  12. Li CJ, Li Y, Yang GJ, Li CX. A novel plasma-sprayed durable thermal barrier coating with a well-bonded YSZ interlayer between porous YSZ and bond coat. J Therm Spray Technol. 2012;21(3–4):383. https://doi.org/10.1007/s11666-012-9771-0.

    Article  CAS  Google Scholar 

  13. Sun JY, Pei YL, Li SS, Zhang H, Gong SK. Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades. Rare Met. 2017;36(7):556. https://doi.org/10.1007/s12598-014-0340-1.

    Article  CAS  Google Scholar 

  14. Chevallier J, Isern L, Almandoz Forcen K, Chalk C, Nicholls JR. Modelling evaporation in electron-beam physical vapour deposition of thermal barrier coatings. Emergent Mater. 2021;4(6):1499. https://doi.org/10.1007/s42247-021-00284-5.

    Article  CAS  Google Scholar 

  15. Liu MJ, Zhang G, Lu YH, Han JQ, Li GR, Li CX, Li CJ, Yang GJ. Plasma spray-physical vapor deposition toward advanced thermal barrier coatings: a review. Rare Met. 2020;39(5):479. https://doi.org/10.1007/s12598-019-01351-x.

    Article  CAS  Google Scholar 

  16. He W, Mauer G, Sohn YJ, Schwedt A, Guillon O, Vassen R. Investigation on growth mechanisms of columnar structured YSZ coatings in plasma spray-physical vapor deposition (PS-PVD). J Eur Ceram Soc. 2019;39(10):3129. https://doi.org/10.1016/j.jeurceramsoc.2019.04.003.

    Article  CAS  Google Scholar 

  17. Wu X, Fan JF, Chen XY, Liang XH, Zhang XF, Xu J. Microstructure evolution of Al-modified 7YSZ PS-PVD TBCs in thermal cycle. Ceram Int. 2021;47(9):12170. https://doi.org/10.1016/j.ceramint.2021.01.064.

    Article  CAS  Google Scholar 

  18. Wei ZY, Meng GH, Chen L, Li GR, Liu MJ, Zhang WX, Zhao LN, Zhang Q, Zhang XD, Wan CL, Qu ZX, Chen L, Feng J, Liu L, Dong H, Bao ZB, Zhao XF, Zhang XF, Guo L, Wang L, Cheng B, Zhang WW, Xu PY, Yang GJ, Cai HN, Cui H, Wang Y, Ye FX, Ma Z, Pan W, Liu M, Zhou KS, Li CJ. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J Adv Ceram. 2022;11(7):985. https://doi.org/10.1007/s40145-022-0581-7.

    Article  CAS  Google Scholar 

  19. Zhang XF, Niu SP, Deng ZQ, Liu M, Li H, Deng CM, Deng CG, Zhou KS. Preparation of Al2O3 nanowires on 7YSZ thermal barrier coatings against CMAS corrosion. Trans Nonferrous Metals Soc China. 2019;29(11):2362. https://doi.org/10.1016/s1003-6326(19)65142-3.

    Article  CAS  Google Scholar 

  20. Zhang XF, Zhou KS, Xu W, Song JB, Deng CM, Liu M. Reaction mechanism and thermal insulation property of Al-deposited 7YSZ thermal barrier coating. J Mater Sci Technol. 2015;31(10):1006. https://doi.org/10.1016/j.jmst.2015.06.002.

    Article  CAS  Google Scholar 

  21. Mei XX, Liu XF, Wang CX, Wang YN, Dong C. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation. Appl Surf Sci. 2012;263:810. https://doi.org/10.1016/j.apsusc.2012.10.011.

    Article  CAS  Google Scholar 

  22. Han M, Zhou GD, Huang JH, Chen SH. Optimization selection of the thermal conductivity of the top ceramic layer in the double-ceramic-layer thermal barrier coatings based on the finite element analysis of thermal insulation. Surf Coat Technol. 2014;240:320. https://doi.org/10.1016/j.surfcoat.2013.12.047.

    Article  CAS  Google Scholar 

  23. Dong HY, Wang DX, Pei YL, Li HY, Li P, Ma W. Optimization and thermal cycling behavior of La2Ce2O7 thermal barrier coatings. Ceram Int. 2013;39(2):1863. https://doi.org/10.1016/j.ceramint.2012.08.034.

    Article  CAS  Google Scholar 

  24. Kazan M, Masri P. The contribution of surfaces and interfaces to the crystal thermal conductivity. Surf Sci Rep. 2014;69(1):1. https://doi.org/10.1016/j.surfrep.2013.11.001.

    Article  CAS  Google Scholar 

  25. Tan Y, Srinivasan V, Nakamura T, Sampath S, Bertrand P, Bertrand G. Optimizing compliance and thermal conductivity of plasma sprayed thermal barrier coatings via controlled powders and processing strategies. J Therm Spray Technol. 2012;21(5):950. https://doi.org/10.1007/s11666-012-9780-z.

    Article  CAS  Google Scholar 

  26. Yang G, Zhao CY. Infrared radiative properties of EB-PVD thermal barrier coatings. Int J Heat Mass Transf. 2016;94:199. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.063.

    Article  CAS  Google Scholar 

  27. Guo L, Li MZ, Ye FX. Phase stability and thermal conductivity of RE2 O3 (RE=La, Nd, Gd, Yb) and Yb2 O3 co-doped Y2O3 stabilized ZrO2 ceramics. Ceram Int. 2016;42(6):7360. https://doi.org/10.1016/j.ceramint.2016.01.138.

    Article  CAS  Google Scholar 

  28. Wu J, Padture NP, Gell M. High-temperature chemical stability of low thermal conductivity ZrO2–GdO1.5 thermal-barrier ceramics in contact with α-Al2O3. Scripta Mater. 2004;50(10):1315. https://doi.org/10.1016/j.scriptamat.2004.02.020.

    Article  CAS  Google Scholar 

  29. Sun LL, Guo HB, Peng H, Gong SK, Xu HB. Phase stability and thermal conductivity of ytterbia and yttria co-doped zirconia. Prog Nat Sci Mater Int. 2013;23(4):440. https://doi.org/10.1016/j.pnsc.2013.06.013.

    Article  Google Scholar 

  30. Siegel R, Spuckler CM. Analysis of thermal radiation effects on temperatures in turbine engine thermal barrier coatings. Mater Sci Eng Struct Mater Prop Microstruct Process. 1998;245(2):150. https://doi.org/10.1016/s0921-5093(97)00845-9.

    Article  Google Scholar 

  31. Zhang XF, Deng ZQ, Li H, Mao J, Deng CM, Deng CG, Niu SP, Chen WL, Song JB, Fan JF, Liu M, Zhou KS. Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines. Mater Degrad. 2020. https://doi.org/10.1038/s41529-020-00134-5.

    Article  Google Scholar 

  32. Zhang XF, Zhou KS, Liu M, Deng CM, Deng CG, Song JB, Tong X. Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings. Ceram Int. 2016;42(12):13969. https://doi.org/10.1016/j.ceramint.2016.05.210.

    Article  CAS  Google Scholar 

  33. Zhang XF, Zhou KS, Liu M, Deng CM, Deng CG, Deng ZQ. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating. Ceram Int. 2016;42(16):19349. https://doi.org/10.1016/j.ceramint.2016.09.106.

    Article  CAS  Google Scholar 

  34. Zhang XF, Liu M, Li H, Deng CM, Deng CG, Deng ZQ, Niu SP, Zhou KS. Structural evolution of Al-modified PS-PVD 7YSZ TBCs in thermal cycling. Ceram Int. 2019;45(6):7560. https://doi.org/10.1016/j.ceramint.2019.01.050.

    Article  CAS  Google Scholar 

  35. Zhang XF, Li M, Zhang A, Guo SQ, Mao J, Deng CM, Wang PP, Deng CG, Feng JL, Liu M, Zhou KS, Lai C. Al-modification for PS-PVD 7YSZ TBCs to improve particle erosion and thermal cycle performances. J Adv Ceram. 2022;11(7):1093. https://doi.org/10.1007/s40145-022-0596-0.

    Article  CAS  Google Scholar 

  36. Rätzer-Scheibe HJ, Schulz U, Krell T. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings. Surf Coat Technol. 2006;200(18–19):5636. https://doi.org/10.1016/j.surfcoat.2005.07.109.

    Article  CAS  Google Scholar 

  37. Gu S, Lu TJ, Hass DD, Wadley HNG. Thermal conductivity of zirconia coatings with zig-zag pore microstructures. Acta Mater. 2001;49(13):2539. https://doi.org/10.1016/s1359-6454(01)00141-0.

    Article  CAS  Google Scholar 

  38. Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol. 2002;151:383. https://doi.org/10.1016/s0257-8972(01)01651-6.

    Article  Google Scholar 

  39. Lu TJ, Levi CG, Wadley HNG, Evans AG. Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J Am Ceram Soc. 2001;84(12):2937. https://doi.org/10.1111/j.1151-2916.2001.tb01118.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51801034 and 52172067), Guangdong Province Outstanding Youth Foundation (No. 2021B1515020038), Guangdong Special Support Program (No. 2019BT02C629), Key R & D project in ShanXi Province (No. 2019ZDLGY01-07), and Guangdong Academy of Sciences Program (No. 2020GDASYL-20200104030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Tan or Xiao-Feng Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JG., Tan, X., Fan, XJ. et al. Thermal insulation performance of 7YSZ TBCs adjusted via Al modification. Rare Met. 42, 994–1004 (2023). https://doi.org/10.1007/s12598-022-02221-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02221-9

Keywords

Navigation