Skip to main content
Log in

Impedance Analysis of 7YSZ Thermal Barrier Coatings During High-Temperature Oxidation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

ZrO2-7 wt.%Y2O3 (7YSZ) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. High-temperature oxidation of 7YSZ TBCs was accomplished at 950 °C and characterized by impedance spectroscopy and scanning electron microscopy with energy-dispersive spectrometry. The results indicated that the thermally grown oxide (TGO) mainly contained alumina. The increase of the thickness of the TGO layer appeared to follow a parabolic law. Impedance analysis demonstrated that the resistance of the TGO increased with increasing oxidation time, also following a parabolic law, and that characterization of the TGO thickness based on fitting an equivalent circuit to its measured resistance is feasible. The YSZ grain-boundary resistance increased due to increasing cracks within the coating for oxidation time less than 50 h. However, beyond 150 h, the YSZ grain-boundary resistance slightly decreased, mainly due to sintering of the coating during the oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Gurrappa and A.S. Rao, Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines, Surf. Coat. Technol., 2006, 201(6), p 3016-3029

    Article  Google Scholar 

  2. X.F. Zhang, K.S. Zhou, W. Xu et al., Reaction Mechanism and Thermal Insulation Property of Al-Deposited 7YSZ Thermal Barrier Coating, J. Mater. Sci. Technol., 2015, 31(10), p 1006-1010

    Article  Google Scholar 

  3. R. Vaßen, M.O. Jarligo, T. Steinke et al., Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 938-942

    Article  Google Scholar 

  4. W. Huang, C. Zhu, X.Y. Liu et al., A Comparative Study of the Microstructure and Oxidation Behavior in Supersonic and Conventional Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 235, p 853-859

    Article  Google Scholar 

  5. M.Y. He, A.G. Evans, and J.W. Hutchinson, Effects of Morphology on the Decohesion of Compressed Thin Films, Mater. Sci. Eng. A, 1998, 245(2), p 168-181

    Article  Google Scholar 

  6. S. Chaki, P. Marical, S. Panier et al., Interfacial Defects Detection in Plasma-Sprayed Ceramic Coating Component Using Two Stimulated Infrared Thermography Techniques, NDT E Int., 2011, 44(6), p 519-522

    Article  Google Scholar 

  7. M. Schweda, T. Beck, M. Offermann et al., Thermo Graphic Analysis and Modelling of the Delamination Crack Growth in a Thermal Barrier Coating on Fecralloy Substrate, Surf. Coat. Technol., 2013, 217, p 124-128

    Article  Google Scholar 

  8. L. Yang, Y.C. Zhou, and C. Lu, Damage Evolution and Rupture Time Prediction in Thermal Barrier Coatings Subjected to Cyclic Heating and Cooling: An Acoustic Emission Method, Acta Mater., 2011, 59(17), p 6519-6529

    Article  Google Scholar 

  9. L. Yang, Z.C. Zhong, and J. You, Acoustic Emission Evaluation of Fracture Characteristics in Thermal Barrier Coatings Under Bending, Surf. Coat. Technol., 2013, 232, p 710-718

    Article  Google Scholar 

  10. W.B. Yao, C.Y. Dai, and W.G. Mao, Acoustic Emission Analysis on Tensile Failure of Air Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2012, 206(18), p 3803-3807

    Article  Google Scholar 

  11. X. Wang, R.T. Wu, and A. Atkinson, Characterisation of Residual Stress and Interface Degradation in TBCs by Photo-Luminescence Piezo-Spectroscopy, Surf. Coat. Technol., 2010, 204(15), p 2472-2482

    Article  Google Scholar 

  12. X. Wang, G. Lee, and A. Atkinson, Investigation of TBCs on Turbine Blades by Photoluminescence Piezospectroscopy, Acta Mater., 2009, 57(1), p 182-195

    Article  Google Scholar 

  13. J.H. Ai, Y.Z. Chen, and M. Urquidi-Macdonald, Electrochemical Impedance Spectroscopic Study of Passive Zirconium, J. Nucl. Mater., 2008, 379(1–3), p 162-168

    Article  Google Scholar 

  14. J.M. McIntyre and H.Q. Pham, Electrochemical Impedance Spectroscopy: A Tool for Organic Coatings Optimizations, Prog. Org. Coat., 1996, 27(1–4), p 201-207

    Article  Google Scholar 

  15. A. Amirudin and D. Thieny, Application of Electrochemical Impedance Spectroscopy to Study the Degradation of Polymer-Coated Metals, Prog. Org. Coat., 1995, 26(1), p 1-28

    Article  Google Scholar 

  16. S.H. Song, P. Xiao, and L.Q. Weng, Evaluation of Microstructural Evolution in Thermal Barrier Coatings During Thermal Cycling Using Impedance Spectroscopy, J. Eur. Ceram. Soc., 2005, 25(7), p 1167-1173

    Article  Google Scholar 

  17. H. Huang, C. Liu, N.Y. Ni, and C.G. Zhou, Evaluation of Microstructural Evolution of Thermal Barrier Coatings Exposed to Na2SO4 using Impedance Spectroscopy, Corros. Sci., 2011, 53(4), p 1369-1374

    Article  Google Scholar 

  18. C.X. Zhang, C.G. Zhou, S.K. Gong et al., Evaluation of Thermal Barrier Coating Exposed to Different Oxygen Partial Pressure Environments by Impedance Spectroscopy, Surf. Coat. Technol., 2006, 201(1–2), p 446-451

    Article  Google Scholar 

  19. X. Wang, J.F. Mei, and P. Xiao, Non-destructive Evaluation of Thermal Barrier Coatings Using Impedance Spectroscopy, J. Eur. Ceram. Soc., 2001, 21(7), p 855-859

    Article  Google Scholar 

  20. M.S. Ali, S.H. Song, and P. Xiao, Evaluation of Degradation of Thermal Barrier Coatings Using Impedance Spectroscopy, J. Eur. Ceram. Soc., 2002, 22(1), p 101-107

    Article  Google Scholar 

  21. J.G. Fletcher, A.R. West, and J.T.S. Irvine, The AC Impedance Spectroscopy Response of the Physical Interface Between Yttria-Stabilized Zirconia and YBa2Cu3O7−x , J. Electrochem. Soc., 1995, 142(8), p 2650-2654

    Article  Google Scholar 

  22. P.S. Anderson, X. Wang, and P. Xiao, Impedance Spectroscopy Study of Plasma Sprayed and EB-PVD Thermal Barrier Coatings, Surf. Coat. Technol., 2004, 185(1), p 106-119

    Article  Google Scholar 

  23. K. Ogawa, D. Minkov, T. Shoji et al., NDE of Degradation of Thermal Barrier Coating by Means of Impedance Spectroscopy, NDT and E Int., 1999, 32(3), p 177-185

    Article  Google Scholar 

  24. N. Birks and G.H. Meier, Introduction to High-Temperature Oxidation of Metals, Edward Arnold, London, 1983

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from Fundamental Research on Thermal Protection (Grant No. 2016A030312015), Development and Application of Technology of Advanced Plasma Spraying (Grant No. 2013B050800031), Development and Application of Technology of Advanced High Temperature Protective Coating (Grant No. 2013B010102023), and Construction of Sino - French Modern Material Surface Engineering Technology International Cooperation Base (Grant No. 2014B050502008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WL., Liu, M. & Zhang, JF. Impedance Analysis of 7YSZ Thermal Barrier Coatings During High-Temperature Oxidation. J Therm Spray Tech 25, 1596–1603 (2016). https://doi.org/10.1007/s11666-016-0471-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0471-z

Keywords

Navigation