Skip to main content

Advertisement

Log in

Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p–n heterojunction for efficient photocatalytic hydrogen evolution

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Improving the separation of photogenerated carriers and suppressing the rapid complication of electron–hole pairs are essential ways to improve photocatalytic hydrogen production activity. The high recombination rate of the photogenerated carriers is an issue encountered when developing CdS as a promising photocatalytic material. This work allowed to accelerate the separation of photogenerated electrons and holes by loading monoclinic β-AgVO3 on hexagonal CdS nanorods to construct a one-dimensional (1D)/1D p-n heterojunction. The introduction of monoclinic β-AgVO3 with a narrow band gap effectively improves the light absorption of CdS, which is conducive to improving the use of visible light. The integrated electric field of the p–n heterojunction can effectively transfer electrons and holes in the direction suitable to hydrogen evolution. The photoluminescence and electrochemical characterization of the catalysts showed that the p–n heterojunction formed after loading β-AgVO3 greatly improved the separation efficiency of photocarriers. The hydrogen evolution experiments show that the composite catalyst has good photocatalytic hydrogen evolution capability and stability. The composite catalyst with the best photocatalytic performance was obtained by studying β-AgVO3 with different loadings. The composite catalyst reached 581.5 μmol of hydrogen amount within 5 h, which is 3.8 times higher than that of CdS alone and its apparent quantum efficiency reaches 8.02%. The present work provides a possible solution for the development of perovskite and the extensiveness of CdS in photocatalytic hydrogen evolution.

Graphical abstract

摘要

提高光生载流子的分离并抑制电子空穴对的快速复合是提升光催化析氢活性的主要因素之一。CdS作为一种具有前景的光催化材料,光生载流子的高复合率是其发展过程中面临的问题。本工作通过在六方相CdS纳米棒上加载单斜晶β-AgVO3来构建一维/一维p-n异质结,可以加速光生电子和空穴的分离。β-AgVO3的引入有效提升了CdS的光吸收能力,从而提高可见光的利用率。p-n异质结的内建电场可以有效地将电子和空穴转移到适合析氢的方向。光致发光和电化学表征表明,负载β-AgVO3后形成的p-n异质结大大提高了光载流子的分离效率。析氢实验表明,该复合催化剂具有良好的光催化析氢能力和稳定性。通过对不同负载量的β-AgVO3进行研究,得到了具有最佳光催化性能的复合催化剂。复合催化剂在5 h内氢气量达到581.5 μmol,是单纯CdS催化剂的3.8倍,表观量子效率达到8.02%。本工作为钙钛矿在光催化析氢方面的发展和CdS的拓展提供了新的可行方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pan JW, Zhang GX, Guan ZJ, Zhao QY, Li GQ, Yang JJ, Li QY, Zou ZG. Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn2S4 nanosheets for boosting photocatalytic hydrogen evolution. J Energ Chem. 2021;58:408. https://doi.org/10.1016/j.jechem.2020.10.030.

    Article  CAS  Google Scholar 

  2. Chen R, Chen J, Che HN, Zhou G, Ao YH, Liu B. Atomically dispersed main group magnesium on cadmium sul-fide as the active site for promoting photocatalytic hydrogen evolution. Chin J Struc Chem. 2022;41(1):2201014.

    CAS  Google Scholar 

  3. Wang Q, Lu S, Sun-Waterhouse DX, Zhang TR, Waterhouse G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat. 2021;2(2):154. https://doi.org/10.1002/smm2.1033.

    Article  CAS  Google Scholar 

  4. Feng YJ, Duan Y, Zou HJ, Ma JP, Zhou K, Zhou XY. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Google Scholar 

  5. Liu DD, Ding WJ, Liu JJ, Zhang JT. Recent advances in defect chemistry of oxides for photocatalysis applications. Chin J Rare Met. 2021;45(5):583. https://doi.org/10.13373/j.cnki.cjrm.XY20080036.

    Google Scholar 

  6. Chen F, Feng HF, Luo W, Wang P, Yu HG, Fan JJ. Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst. Rare Met. 2021;40(11):3125. https://doi.org/10.1007/s12598-021-01755-8.

    Article  CAS  Google Scholar 

  7. Liao YW, Yang J, Wang GH, Wang J, Wang K, Yan SD. Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4. Rare Met. 2022;41(2):396. https://doi.org/10.1007/s12598-021-01784-3.

    Article  CAS  Google Scholar 

  8. Feng YJ, Wang Y, Wang KW, Ma JP, Duan YY, Liu J, Lu X, Zhang B, Wang GY, Zhou XY. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 2022;41(2):385. https://doi.org/10.1007/s12598-021-01815-z.

    Article  CAS  Google Scholar 

  9. Shen RC, He KL, Zhang AP, Li N, Ng YH, Zhang P, Hu J, Li X. In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl Catal B-Environ. 2021;291: 120104. https://doi.org/10.1016/j.apcatb.2021.120104.

    Article  CAS  Google Scholar 

  10. Liang ZZ, Shen RC, Ng YH, Zhang P, Xiang QJ, Li X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Technol. 2020;56:89. https://doi.org/10.1016/j.jmst.2020.04.032.

    Article  CAS  Google Scholar 

  11. Shen RC, Ding YN, Li SB, Zhang P, Xiang QJ, Ng YH, Li X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin J Catal. 2021;42(1):25. https://doi.org/10.1016/S1872-2067(20)63600-2.

    Article  CAS  Google Scholar 

  12. Lin X, Du S, Li C, Li G, Li Y, Chen F, Fang P. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal Lett. 2020;150:1898. https://doi.org/10.1007/s10562-020-03118-x.

    Article  CAS  Google Scholar 

  13. Wang JF, Chen J, Wang PF, Hou J, Wang C, Ao YH. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl Catal B Environ. 2018;239(30):578. https://doi.org/10.1016/j.apcatb.2018.08.048.

    Article  CAS  Google Scholar 

  14. Jiang ZM, Chen Q, Zheng QQ, Shen RC, Zhang P, Li X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and TiC nanosheets for boosted photocatalytic H2 evolution. Acta Phys Chim Sin. 2021;37(6):2010059.

    Google Scholar 

  15. Bai JX, Shen RC, Chen WL, Xie J, Zhang P, Jiang ZM, Li X. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7 Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chem Eng J. 2022;429(1):132587. https://doi.org/10.1016/j.cej.2021.132587.

    Article  CAS  Google Scholar 

  16. Xue C, Li H, An H, Yang BL, Wei JJ, Yang GD. NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet bridge toward visible-light-driven hydrogen evolution. ACS Catal. 2018;8(2):1532. https://doi.org/10.1021/acscatal.7b04228.

    Article  CAS  Google Scholar 

  17. Wang YQ, Shen SH. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Phys Chim Sin. 2020;36(3):1905080.

    Article  Google Scholar 

  18. Wang L, Zhu CL, Yin LS, Huang W. Construction of Pt-M (M= Co, Ni, Fe)/g-C3N4 composites for highly efficient photocatalytic H2 generation. Acta Phys Chim Sin. 2020;36(7):1907001. https://doi.org/10.3866/PKU.WHXB201907001.

    Article  CAS  Google Scholar 

  19. Cao D, An H, Yan XQ, Zhao YX, Yang GD, Mei H. Fabrication of Z-scheme heterojunction of SiC/Pt/CdS nanorod for efficient photocatalytic H2 evolution. Acta Phys Chim Sin. 2020;36(3):1901051. https://doi.org/10.3866/PKU.WHXB201901051.

    Article  CAS  Google Scholar 

  20. Lu TY, Li TF, Shi DS, Sun JL, Pang H, Xu L, Yang J, Tang YW. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat. 2021;2(4):591. https://doi.org/10.1002/smm2.1063.

    Article  CAS  Google Scholar 

  21. Liu Y, Chen N, Li WD, Sun MZ, Wu T, Huang BL, Yong X, Zhang QH, Gu L, Song HQ, Bauer R, Tse JS, Zang SQ, Yang B, Lu SY. Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat. 2021. https://doi.org/10.1002/smm2.1067.

    Article  Google Scholar 

  22. Xu QL, Zhu BC, Cheng B, Yu JG, Zhou MH, Ho WK. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Appl Catal B-Environ. 2019;255(15): 117770. https://doi.org/10.1016/j.apcatb.2019.117770.

    Article  CAS  Google Scholar 

  23. Yan T, Zhang XJ, Liu H, Jin ZL. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution. Chin J Struct Chem. 2022;41(1):201047.

    Google Scholar 

  24. Peng SQ, Yang Y, Tan JN, Gan C, Li YX. In situ loading of Ni2P on Cd0.5Zn0.5S with red phosphorus for enhanced visible light photocatalytic H2 evolution. Appl Surf Sci. 2018;447:822. https://doi.org/10.1016/j.apsusc.2018.04.050.

    Article  CAS  Google Scholar 

  25. Zhang MY, Hu QY, Ma KW, Ding Y, Li C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy. 2020;73: 104810. https://doi.org/10.1016/j.nanoen.2020.104810.

    Article  CAS  Google Scholar 

  26. Meng XY, Zhang CC, Dong CZ, Sun WJ, Ji D, Ding Y. Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS. Chem Eng J. 2020;389(1): 124432. https://doi.org/10.1016/j.cej.2020.124432.

    Article  CAS  Google Scholar 

  27. Li T, Wang XF, Jin ZL. MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution. Mol Catal. 2021;513:111829. https://doi.org/10.1016/j.mcat.2021.111829.

    Article  CAS  Google Scholar 

  28. Xing FS, Liu QW, Huang CJ. Mo-doped ZnIn2S4 flower-like hollow microspheres for improved visible light-driven hydrogen evolution. Solar RRL. 2020;4(3):1900483. https://doi.org/10.1002/solr.201900483.

    Article  CAS  Google Scholar 

  29. Sayed M, Yu JG, Liu G, Jaroniec M. Non-noble plasmonic metal-based photocatalysts. Chem Rev. 2022;122(11):10484. https://doi.org/10.1021/acs.chemrev.1c00473.

    Article  CAS  Google Scholar 

  30. Li YX, Han P, Hou YL, Peng SQ, Kuang XJ. Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution. Appl Catal B-Environ. 2019;244(5):604. https://doi.org/10.1016/j.apcatb.2018.11.088.

    Article  CAS  Google Scholar 

  31. Gong HS, Li Z, Chen ZH, Liu QW, Song MX, Huang CJ. NiSe/Cd0.5Zn0.5S composite nanoparticles for use in p-n heterojunction-based photocatalysts for solar energy harvesting. ACS Appl Nano Mater. 2020;3(4):3665. https://doi.org/10.1021/acsanm.0c00388.

    Article  CAS  Google Scholar 

  32. Sun LM, Zhuang Y, Yuan YS, Zhan WW, Wang XJ, Han XG, Zhao YL. Nitrogen-doped carbon-coated CuO-In2O3 p-n heterojunction for remarkable photocatalytic hydrogen evolution. Adv Energy Mater. 2019;9(48):1902839. https://doi.org/10.1002/aenm.201902839.

    Article  CAS  Google Scholar 

  33. Wang J, Wang GH, Cheng B, Yu JG, Fan JJ. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal. 2021;42(1):56. https://doi.org/10.1016/S1872-2067(20)63634-8.

    Article  Google Scholar 

  34. Li T, Yan T, Jin ZL. Design and preparation of a ternary MoC-QDs/C/Mo-S heterojunction for enhanced Eosin Y-sensitized photocatalytic hydrogen evolution. New J Chem. 2021;45:11905. https://doi.org/10.1039/D1NJ01902C.

    Article  CAS  Google Scholar 

  35. Li T, Guo X, Zhang LJ, Yan T, Jin ZL. 2D CoP supported 0D WO3 constructed S-scheme for efficient photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2021;46(39):20560. https://doi.org/10.1016/j.ijhydene.2021.03.169.

    Article  CAS  Google Scholar 

  36. Ma XH, Yang LQ, Lei KX, Zheng SJ, Chen C, Song HW. Doping in inorganic perovskite for photovoltaic application. Nano Energy. 2020;78: 105354. https://doi.org/10.1016/j.nanoen.2020.105354.

    Article  CAS  Google Scholar 

  37. Lu YZ, Akbar M, Xia C, Mi YQ, Ma LG, Wang BY, Zhu B. Catalytic membrane with high ion electron conduction made of strongly correlated perovskite LaNiO3 and Ce0.8Sm0.2O2-δ for fuel cells. J Catal. 2020;386:117. https://doi.org/10.1016/j.jcat.2020.04.004.

    Article  CAS  Google Scholar 

  38. Moniruddin M, Ilyassov B, Zhao X, Smith E, Serikov T, Ibrayev N, Asmatulu R, Nuraje N. Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater Today Energ. 2018;7:246. https://doi.org/10.1016/j.mtener.2017.10.005.

    Article  Google Scholar 

  39. Kumar SG, Kavitha R, Nithya PM. Tailoring the CdS surface structure for photocatalytic applications. J Environ Chem Eng. 2020;8(5):104313. https://doi.org/10.1016/j.jece.2020.104313.

    Article  CAS  Google Scholar 

  40. Cheng L, Xiang QJ, Liao YL, Zhang HW. CdS-based photocatalysts. Energ. Environ Sci. 2018;11:1362. https://doi.org/10.1039/C7EE03640J.

    Article  CAS  Google Scholar 

  41. Xu Y, Huang Y, Zhang B. Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorg Chem Front. 2016;3:591. https://doi.org/10.1039/C5QI00217F.

    Article  CAS  Google Scholar 

  42. Sun GT, Xiao B, Zheng H, Shi JW, Mao SM, He C, Li ZH, Cheng YH. Ascorbic acid functionalized CdS-ZnO core-shell nanorods with hydrogen spillover for greatly enhanced photocatalytic H2 evolution and outstanding photostability. J Mater Chem A. 2021;9:9735. https://doi.org/10.1039/D1TA01089A.

    Article  CAS  Google Scholar 

  43. Ren DD, Liang ZZ, Ng YH, Zhang P, Xiang QJ, Li X. Strongly coupled 2D–2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem Eng J. 2020;390(15):124496. https://doi.org/10.1016/j.cej.2020.124496.

    Article  CAS  Google Scholar 

  44. Shen RC, Lu XY, Zheng QQ, Chen Q, Ng YH, Zhang P, Li X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Solar RRL. 2021;5(7):2100177. https://doi.org/10.1002/solr.202100177.

    Article  CAS  Google Scholar 

  45. Ma DD, Wang ZY, Shi JW, Zou YJ, Lv YX, Ji X, Li ZH, Cheng YH, Wang LZ. Ultrathin Al2O3 bridging layer between CdS and ZnO boosting photocatalytic hydrogen production. J Mater Chem A. 2020;8:11031. https://doi.org/10.1039/D0TA03933K.

    Article  CAS  Google Scholar 

  46. Song JM, Lin YZ, Yao HB, Fan FJ, Li XG, Yu SH. Superlong β-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties. ACS Nano. 2009;3(3):653. https://doi.org/10.1021/nn800813s.

    Article  CAS  Google Scholar 

  47. Yang J, Hao JY, Xu SY, Wang Q, Dai J, Zhang AC, Pang XC. InVO4/β-AgVO3 nanocomposite as a direct Z-scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction. ACS Appl Mater Interf. 2019;11(35):32025. https://doi.org/10.1021/acsami.9b10758.

    Article  CAS  Google Scholar 

  48. Zhou K, He WL, Zhang X, Zhang B, Gong XN, Wang KW, Zhang ZC, Zhang XL, Xia ZN, Zhou XY. Photocatalytic and photochemical processes of AgCl/TiO2 studied with a fully integrated X-ray photoelectron spectrometer. Rare Met. 2021;40(4):799. https://doi.org/10.1007/s12598-020-01635-7.

    Article  CAS  Google Scholar 

  49. Yang KC, Liu TX, Jin ZL. 3D mesoporous ultra-thin g-C3N4 coupled with monoclinic β-AgVO3 as p-n heterojunction for photocatalytic hydrogen evolution. Mol Catal. 2021;513: 111828. https://doi.org/10.1016/j.mcat.2021.111828.

    Article  CAS  Google Scholar 

  50. Han ZY, Li YJ, Chen FT, Tang SP, Wang P. Preparation of ZnO/Ag2O nanofibers by coaxial electrospinning and study of their photocatalytic properties. Chem J Chinese U. 2020;41(2):308. https://doi.org/10.7503/cjcu20190478.

    Article  CAS  Google Scholar 

  51. Jin ZL, Jiang XD, Guo X. Hollow tubular Co9S8 grown on In2O3 to form S-scheme heterojunction for efficient and stable hydrogen evolution. Int J Hydrogen Energ. 2022;47(3):1669. https://doi.org/10.1016/j.ijhydene.2021.10.151.

    Article  CAS  Google Scholar 

  52. Wan YH, Du SW, Lu CR, Ren KK, Shi BY, Liu SY, Li CH, Dou WD, Fang P, Ye N. Metallic CuS decorated CdS nanowires for efficient photocatalytic H2 evolution under visible-light irradiation. J Alloy Compd. 2021;871:159461. https://doi.org/10.1016/j.jallcom.2021.159461.

    Article  CAS  Google Scholar 

  53. Bai JX, Chen WL, Shen RC, Jiang ZM, Zhang P, Liu W, Li X. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution. J Mater Sci Technol. 2022;112:85. https://doi.org/10.1016/j.jmst.2021.11.003.

    Article  Google Scholar 

  54. Ma DD, Wang ZY, Shi JW, Zhu MS, Yu H, Zou YJ, Lv YX, Sun GT, Mao SM, Cheng YH. Cu-In2S3 nanorod induced the growth of Cu&In co-doped multi-arm CdS hetero-phase junction to promote photocatalytic H2 evolution. Chem Eng J. 2020;399: 125785. https://doi.org/10.1016/j.cej.2020.125785.

    Article  CAS  Google Scholar 

  55. Zulfiqar S, Liu S, Rahman N, Tang H, Shah S, Yu XH, Liu QQ. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Met. 2021;40(9):2381. https://doi.org/10.1007/s12598-020-01616-w.

    Article  CAS  Google Scholar 

  56. Liu Y, Ding SP, Shi YQ, Liu XF, Wu ZZ, Jiang QQ, Zhou TF, Liu NK, Hu JC. Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Appl Catal B-Environ. 2018;234:109. https://doi.org/10.1016/j.apcatb.2018.04.037.

    Article  CAS  Google Scholar 

  57. Chen P, Liu F, Ding HZ, Chen S, Chen L, Li YJ, Au CT, Yin SF. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl Catal B-Environ. 2019;252:33. https://doi.org/10.1016/j.apcatb.2019.04.006.

    Article  CAS  Google Scholar 

  58. Wang JF, Wang PF, Hou J, Qian J, Wang C, Ao YH. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal Sci Technol. 2018;8:5406. https://doi.org/10.1039/C8CY00519B.

    Article  CAS  Google Scholar 

  59. Ma XH, Liu YN, Wang YP, Jin ZL. Co3O4/CeO2 p-n heterojunction construction and application for efficient photocatalytic hydrogen evolution. Int J Hydrogen Energ. 2021;46(68):33809. https://doi.org/10.1016/j.ijhydene.2021.07.201.

    Article  CAS  Google Scholar 

  60. Shi JW, Chen F, Hou LL, Li GS, Li YQ, Guan XJ, Liu HP, Guo LJ. Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Appl. Catal. B Environ. 2021;280:119385. https://doi.org/10.1016/j.apcatb.2020.119385.

  61. Yan X, Jin ZL. Interface engineering: NiAl-LDH in-situ derived NiP2 quantum dots and Cu3P nanoparticles ingeniously constructed p-n heterojunction for photocatalytic hydrogen evolution. Chem Eng J. 2020;420(2): 127682. https://doi.org/10.1016/j.cej.2020.127682.

    Article  CAS  Google Scholar 

  62. Li T, Jin ZL. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: role of Ni2P for accelerating separation of photogenerated carriers. J Colloid Interf Sci. 2022;605:385. https://doi.org/10.1016/j.jcis.2021.07.098.

    Article  CAS  Google Scholar 

  63. Yang GW, Chen T, Xing CW, Tian ZC, Hu YJ, Yu GY, Li XY. Construction of multi-scale 1D/2D CdS/ZnS(en)0.5 nanorod/nanosheet heterojunction to boost photocatalytic hydrogen generation performance. Appl Surf Sci. 2022;578:152033. https://doi.org/10.1016/j.apsusc.2021.152033.

    Article  CAS  Google Scholar 

  64. Cao SW, Shen BJ, Tong T, Fu JW, Yu JG. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater. 2018;28(21):1800136. https://doi.org/10.1002/adfm.201800136.

    Article  CAS  Google Scholar 

  65. Su P, Liu H, Jin ZL. Metal organic framework-derived Co3O4/NiCo2O4 hollow double-shell polyhedrons for effective photocatalytic hydrogen generation. Appl Surf Sci. 2022;571: 151288. https://doi.org/10.1016/j.apsusc.2021.151288.

    Article  CAS  Google Scholar 

  66. Zhang LX, Dong XL, Wang Y, Zheng N, Ma HC, Zhang XF. One-pot synthesis of SnS2/In2S3 heterostructures for efficient photocatalysis. Appl Surf Sci. 2022;579: 152088. https://doi.org/10.1016/j.apsusc.2021.152088.

    Article  CAS  Google Scholar 

  67. Xie ZY, Chen J, Chen YX, Wang TM, Jiang X, Xie YM, Lu CZ. A Z-scheme Pd modified ZnIn2S4/P25 heterojunction for enhanced photocatalytic hydrogen evolution. Appl Surf Sci. 2022;579:152003. https://doi.org/10.1016/j.apsusc.2021.152003.

    Article  CAS  Google Scholar 

  68. Jin ZL, Li T, Zhang L, Wang XP, Wang GR, Hao XQ. Construction of a tandem S-scheme GDY/CuI/CdS-R heterostructure based on morphology-regulated graphdiyne (g-CnH2n-2) for enhanced photocatalytic hydrogen evolution. J Mater Chem A. 2022;10:1976. https://doi.org/10.1039/D1TA09347A.

    Article  Google Scholar 

  69. Zhang LY, Zhang JJ, Yu HG, Yu JG. Emerging S-scheme photocatalyst. Adv Mater. 2022;34(11):2107668. https://doi.org/10.1002/adma.202107668.

    Article  CAS  Google Scholar 

  70. Yang MX, Wang K, Li YB, Yang KC, Jin ZL. Pristine hexagonal CdS assembled with NiV LDH nanosheet formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl Surf Sci. 2021;548:149212. https://doi.org/10.1016/j.apsusc.2021.149212.

    Article  CAS  Google Scholar 

  71. Li L, Salvador PA, Rohrer GS. Photocatalysts with internal electric fields. Nanoscale. 2014;6:24. https://doi.org/10.1039/C3NR03998F.

    Article  Google Scholar 

  72. Liu H, Yan T, ZL J, QX Ma. CoP nanoparticles as cocatalyst modified the CdS/NiWO4 p-n heterojunction to produce hydrogen efficiently. New J Chem. 2020;44:1426. https://doi.org/10.1039/C9NJ05977F.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22062001 and 21975084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Liang Jin or Xin Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XP., Jin, ZL. & Li, X. Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p–n heterojunction for efficient photocatalytic hydrogen evolution. Rare Met. 42, 1494–1507 (2023). https://doi.org/10.1007/s12598-022-02183-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02183-y

Keywords

Navigation