Skip to main content

Advertisement

Log in

Ultrasonic vibration-assisted multi-scale plastic forming of high-entropy alloys in milliseconds

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical Abstract

Due to their excellent properties of specific strength, fracture resistance, corrosion and oxidation resistance, the high entropy alloys have attracted widespread attention as engineering materials. For the sake of industrial applications, one of the essential stages would be the forming of them, especially the construction of multi-scale structures from macroscale to nanoscale. In this work, an efficient method to achieve the fabrication of multi-scale structures on the high entropy alloys is proposed, namely ultrasonic-vibration-assisted plastic forming. In this way, the required pressure can be effectively reduced from 1.53 GPa to 6.87 MPa. And the whole process takes place in milliseconds. Meanwhile, transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) were used to explore the plastic deformation mechanisms of a synergy between dislocation and twinning. The current findings open a window not only to propose new methods for forming multi-scale structures of high entropy alloys but also to reveal the plastic deformation mechanism.

摘要

高熵合金以其优异的比强度、抗断裂、耐腐蚀、抗氧化等性能受到了广泛的关注。这类材料的加工成型, 特别是从宏观到纳米的多尺度结构的快速构建, 是实现其工业化应用的关键. 本文提出了一种在高熵合金上实现多尺度结构制备的有效方法, 即超声振动辅助的室温快速成型加工. 在超声振动这种特殊的应力条件下, CoCrFeNiMn高熵合金的成型应力有效地从1.53 GPa降低到了6.87 MPa, 且整个过程发生在几百毫秒内. 利用透射电镜(TEM)和电子背散射衍射(EBSD)研究了位错与孪生协同的塑性变形机制. 目前的研究结果不仅为高熵合金多尺度结构的加工成型提供了新方法, 而且揭示了其在高频振动作用下塑性变形的机制.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Liu JT, Kang RK, Dong ZG, Zheng FF, Zeng YF, Bao Y. Experimental investigation of damage formation and material removal in ultrasonic assisted grinding of RBSiC. Mater Res Express. 2020;7(12):125202. https://doi.org/10.1088/2053-1591/abd069.

    Article  CAS  Google Scholar 

  2. Sui H, Zhang XY, Zhang DY, Jiang XG, Wu RB. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol. 2017;247:111. https://doi.org/10.1016/j.jmatprotec.2017.03.017.

    Article  Google Scholar 

  3. Yang ZC, Zhu LD, Lin B, Zhang GX, Ni CB, Sui TY. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceram Int. 2019;45(7):8873. https://doi.org/10.1016/j.ceramint.2019.01.216.

    Article  CAS  Google Scholar 

  4. Shen JY, Zhu X, Chen JB, Tao P, Wu X. Investigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon. Micromachines. 2019;10(9):616. https://doi.org/10.3390/mi10090616.

    Article  Google Scholar 

  5. Gao GF, Zhao B, Jiao F, Liu CS. Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting. J Mater Process Technol. 2002;129(1–3):66. https://doi.org/10.1016/S0924-0136(02)00577-0.

    Article  CAS  Google Scholar 

  6. Zhang C, Guo P, Ehmann KF, Li YG. Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics. 2016;67:30. https://doi.org/10.1016/j.ultras.2015.12.016.

    Article  Google Scholar 

  7. Tong JL, Wei G, Zhao L, Wang XL, Ma JJ. Surface microstructure of titanium alloy thin-walled parts at ultrasonic vibration-assisted milling. Int J Adv Manuf Technol. 2019;101(1):1007. https://doi.org/10.1007/s00170-018-3005-7.

    Article  Google Scholar 

  8. Blaha F, Langenecker B. Tensile deformation of zinc crystal under ultrasonic vibration. Naturwissenschaften. 1955;42(556):1.

    Google Scholar 

  9. Langenecker B. Effects of ultrasound on deformation characteristics of metals. IEEE Trans Sonics Ultrason. 1966;13(1):1. https://doi.org/10.1109/T-SU.1966.29367.

    Article  Google Scholar 

  10. Hu J, Shimizu T, Yang M. Investigation on ultrasonic volume effects: stress superposition, acoustic softening and dynamic impact. Ultrason Sonochem. 2018;48:240. https://doi.org/10.1016/j.ultsonch.2018.05.039.

    Article  CAS  Google Scholar 

  11. Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors. Ultrasonics. 2002;40(1–8):379. https://doi.org/10.1016/S0041-624X(02)00126-9.

    Article  CAS  Google Scholar 

  12. Lum I, Huang H, Chang BH, Mayer M, Du D, Zhou Y. Effects of superimposed ultrasound on deformation of gold. J Appl Phys. 2009;105(2): 024905. https://doi.org/10.1063/1.3068352.

    Article  CAS  Google Scholar 

  13. Daud Y, Lucas M, Huang ZH. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium. J Mater Process Technol. 2007;186(1–3):179. https://doi.org/10.1016/j.jmatprotec.2006.12.032.

    Article  CAS  Google Scholar 

  14. Mita K, Hu J, Shimizu T, Yang M. Shearing characteristics in ultrasonic vibration-assisted piercing of fine-grained stainless steel foils. Procedia Manuf. 2018;15:627. https://doi.org/10.1016/j.promfg.2018.07.287.

    Article  Google Scholar 

  15. Sánchez-Sánchez X, Hernández-Avila M, Elizalde LE, Martínez O, Ferrer I, Elías-Zuñiga A. Micro injection molding processing of UHMWPE using ultrasonic vibration energy. Mater Des. 2017;132:1. https://doi.org/10.1016/j.matdes.2017.06.055.

    Article  CAS  Google Scholar 

  16. Zeng K, Wu XY, Liang X, Xu B, Wang YT, Chen XQ, Cheng R, Luo F. Process and properties of micro-ultrasonic powder molding with polypropylene. Int J Adv Manuf Technol. 2014;70(1–4):515. https://doi.org/10.1007/s00170-013-5300-7.

    Article  Google Scholar 

  17. Liu S, Shan XB, Guo K, Yang YC, Xie T. Experimental study on titanium wire drawing with ultrasonic vibration. Ultrasonics. 2018;83:60. https://doi.org/10.1016/j.ultras.2017.08.003.

    Article  Google Scholar 

  18. Bunget C, Ngaile G. Influence of ultrasonic vibration on micro-extrusion. Ultrasonics. 2011;51(5):606. https://doi.org/10.1016/j.ultras.2011.01.001.

    Article  CAS  Google Scholar 

  19. Zhai WD, Li YL, Cheng ZN, Sun LL, Li FY, Li JF. Investigation on the forming force and surface quality during ultrasonic-assisted incremental sheet forming process. Int J Adv Manuf Technol. 2020;106(7–8):2703. https://doi.org/10.1007/s00170-019-04870-0.

    Article  Google Scholar 

  20. Gludovatz B, Hohenwarter A, Thurston KV, Bei HB, Wu ZG, George EP, Ritchie RO. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun. 2016;7(1):1. https://doi.org/10.1038/ncomms10602.

    Article  CAS  Google Scholar 

  21. Dingfeng X, Wang M, Li T, Wei X, Yiping L. A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures. 2022. https://doi.org/10.20517/microstructures.2021.10.

    Article  Google Scholar 

  22. Gao P, Ma ZH, Gu J, Ni S, Suo T, Li YL, Song M, Mai YW, Liao XZ. Exceptional high-strain-rate tensile mechanical properties in a CrCoNi medium-entropy alloy. Sci China Mater. 2022;65:811. https://doi.org/10.1007/s40843-021-1798-6.

    Article  CAS  Google Scholar 

  23. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153. https://doi.org/10.1126/science.1254581.

    Article  CAS  Google Scholar 

  24. Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Met. 2021;40(9):2508. https://doi.org/10.1007/s12598-016-0860-y.

    Article  CAS  Google Scholar 

  25. Qiu XW, Zhang YP, He L, Liu CG. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd. 2013;549:195. https://doi.org/10.1016/j.jallcom.2012.09.091.

    Article  CAS  Google Scholar 

  26. Zhu BH, Qiu HC, Jiang W, Yu QH. Oxidation behavior of Al0.2CoCrFeNi high-entropy alloy film in supercritical water environment. Rare Met. 2022;41:1217. https://doi.org/10.1007/s12598-021-01859-1.

    Article  CAS  Google Scholar 

  27. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  28. Huang PK, Yeh JW, Shun TT, Chen SK. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater. 2004;6(1–2):74. https://doi.org/10.1002/adem.200300507.

    Article  CAS  Google Scholar 

  29. Ranganathan S. Alloyed pleasures: multimetallic cocktails. Curr Sci. 2003;85(10):1404.

    Google Scholar 

  30. Song HQ, Tian FY, Hu QM, Vitos L, Wang YD, Shen J, Chen NX. Local lattice distortion in high-entropy alloys. Phys Rev Mater. 2017;1(2):023404. https://doi.org/10.1103/PhysRevMaterials.1.023404.

    Article  Google Scholar 

  31. Huang ZY, Dai YQ, Li Z, Zhang GQ, Chang CT, Ma J. Investigation on surface morphology and crystalline phase deformation of Al80Li5Mg5Zn5Cu5 high-entropy alloy by ultra-precision cutting. Mater Des. 2020;186:108367. https://doi.org/10.1016/j.matdes.2019.108367.

    Article  CAS  Google Scholar 

  32. Zhang L, Hashimoto T, Yan JW. Machinability exploration for high-entropy alloy FeCrCoMnNi by ultrasonic vibration-assisted diamond turning. CIRP Ann. 2021;70(1):37. https://doi.org/10.1016/j.cirp.2021.04.090.

    Article  CAS  Google Scholar 

  33. Shen QK, Kong XD, Chen XZ. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties. J Mater Sci Technol. 2021;74:136. https://doi.org/10.1016/j.jmst.2020.10.037.

    Article  CAS  Google Scholar 

  34. Peng SY, Mooraj S, Feng R, Liu L, Ren J, Liu YF, Kong FY, Xiao ZY, Zhu C, Liaw PK, Chen W. Additive manufacturing of three-dimensional (3D)-architected CoCrFeNiMn high-entropy alloy with great energy absorption. Scr Mater. 2021;190:46. https://doi.org/10.1016/j.scriptamat.2020.08.028.

    Article  CAS  Google Scholar 

  35. Liu B, Raabe D, Eisenlohr P, Roters F, Arsenlis A, Hommes G. Dislocation interactions and low-angle grain boundary strengthening. Acta Mater. 2011;59(19):125. https://doi.org/10.1016/j.actamat.2011.07.067.

    Article  CAS  Google Scholar 

  36. Jiao ZM, Ma SG, Chu MY, Yang HJ, Wang ZH, Zhang Y, Qiao JW. Superior mechanical properties of AlCoCrFeNiTix high-entropy alloys upon dynamic loading. J Mater Eng Perform. 2016;25(2):451. https://doi.org/10.1007/s11665-015-1869-3.

    Article  CAS  Google Scholar 

  37. Wang BF, Wang C, Liu B, Zhang XY. Dynamic mechanical properties and microstructure of an (Al0.5CoCrFeNi)0.95Mo0.025C0.025 high entropy alloy. Entropy. 2019;21(12):1154. https://doi.org/10.3390/e21121154.

    Article  CAS  Google Scholar 

  38. Ma Y, Yuan FP, Yang MX, Jiang P, Ma E, Wu XL. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater. 2018;148:407. https://doi.org/10.1016/j.actamat.2018.02.016.

    Article  CAS  Google Scholar 

  39. Park JM, Moon J, Bae JW, Jang MJ, Park J, Lee S, Kim HS. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2018;719:155. https://doi.org/10.1016/j.msea.2018.02.031.

    Article  CAS  Google Scholar 

  40. He JY, Wang Q, Zhang HS, Dai LD, Mukai T, Wu Y, Liu XJ, Wang H, Nieh TG, Lu ZP. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy. Sci Bull. 2018;63(6):362. https://doi.org/10.1016/j.scib.2018.01.022.

    Article  CAS  Google Scholar 

  41. Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM. 2013;65(12):1780. https://doi.org/10.1007/s11837-013-0771-4.

    Article  CAS  Google Scholar 

  42. Stepanov N, Tikhonovsky M, Yurchenko N, Zyabkin D, Klimova M, Zherebtsov S, Efimov A, Salishchev G. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics. 2015;59:8. https://doi.org/10.1016/j.intermet.2014.12.004.

    Article  CAS  Google Scholar 

  43. Li Z, Li X, Huang ZY, Zhang ZX, Liang X, Liu H, Liaw PK, Ma J, Shen J. Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature. Acta Mater. 2021;225:117569. https://doi.org/10.1016/j.actamat.2021.117569.

    Article  CAS  Google Scholar 

  44. Gu P, Dao M, Zhu YT. Strengthening at nanoscaled coherent twin boundary in fcc metals. Philos Mag. 2014;94(11):1249. https://doi.org/10.1080/14786435.2014.885138.

    Article  CAS  Google Scholar 

  45. Wen WX, Huang ZY, Li Z, Fu JN, Ruan WQ, Ren S, Zhang ZX, Liang X, Ma J. Multi-scale cold embossing of CoCrFeNiMn high entropy alloy with ultra-high temperature durability. Appl Mater Today. 2021;25:101233. https://doi.org/10.1016/j.apmt.2021.101233.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Key Research and Development Program of China (Nos. 2018YFA0703605), the Key Basic and Applied Research Program of Guangdong Province, China (No. 2019B030302010), the National Natural Science Foundation of China (Nos. 52122105, 51971150 and 51871157). The authors thank the assistance on microscope observation received from the Electron Microscope Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Liu or Jiang Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, WX., Li, LY., Li, Z. et al. Ultrasonic vibration-assisted multi-scale plastic forming of high-entropy alloys in milliseconds. Rare Met. 42, 1146–1153 (2023). https://doi.org/10.1007/s12598-022-02171-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02171-2

Navigation