Skip to main content
Log in

Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-entropy alloys with composition of AlCoCrFeNiTi x (x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158

    Article  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1455

    Google Scholar 

  3. M.A. Hemphilla, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue Behavior of Al0.5CoCrCuFeNi High Entropy Alloys, Acta Mater., 2012, 60, p 5723–5734

    Article  Google Scholar 

  4. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765

    Article  Google Scholar 

  5. C. Huang, Y.Z. Zhang, J.Y. Shen, and R. Vilar, Thermal Stability and Oxidation Resistance of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6A1-4V Alloy, Surf. Coat. Technol., 2011, 206, p 1389–1395

    Article  Google Scholar 

  6. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and Wear Behavior of Al x Co1.5CrFeNi1.5Ti y High-Entropy Alloys, Acta Mater., 2011, 59, p 6308–6317

    Article  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706

    Article  Google Scholar 

  8. Y. Yu, J. Wang, J.S. Li, H.C. Kou, and W.M. Liu, Characterization of BCC Phases in AlCoCrFeNiTi x High Entropy Alloys, Mater. Lett., 2015, 138, p 78–80

    Article  Google Scholar 

  9. Y.J. Zhou, Y. Zhang, T.N. Kim, and J.L. Chen, Microstructure Characterizations and Strengthening Mechanism of Multi-principal Component AlCoCrFeNiTi0.5 Solid Solution Alloy with Excellent Mechanical Properties, Mater. Lett., 2008, 62, p 2673–2676

    Article  Google Scholar 

  10. V. Soare, D. Mitrica, I. Constantin, V. Badilita, F. Stoiciu, A.-M.J. Popescu, and I. Carcea, Influence of Remelting on Microstructure, Hardness and Corrosion Behaviour of AlCoCrFeNiTi High Entropy Alloy, Mater. Sci. Technol., 2015, 31, p 1194–1200

    Article  Google Scholar 

  11. S. Liu, M.C. Gao, P.K. Liaw, and Y. Zhang, Microstructures and Mechanical Properties of Al x CrFeNiTi0.25 Alloys, J. Alloy Compd., 2015, 619, p 610–615

    Article  Google Scholar 

  12. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  13. B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375, p 213–218

    Article  Google Scholar 

  14. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTi x with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904

    Article  Google Scholar 

  15. Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, and J.W. Qiao, Optimizing Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys by Tailoring Microstructures, Acta Metall. Sin., 2013, 26, p 277–284

    Article  Google Scholar 

  16. K.B. Zhang and Z.Y. Fu, Effects of Annealing Treatment on Phase Composition and Microstructure of CoCrFeNiTiAl x High-Entropy Alloys, Intermetallics, 2012, 22, p 24–32

    Article  Google Scholar 

  17. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419–425

    Article  Google Scholar 

  18. R.Q. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15, p 963–980

    Article  Google Scholar 

  19. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, and P.K. Liaw, Tensile ductility of an AlCoCrFeNi Multi-phase High-Entropy Alloy Through Hot Isostatic Pressing (HIP) and Homogenization, Mater. Sci. Eng. A, 2015, 647, p 229–240

    Article  Google Scholar 

  20. J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290

    Google Scholar 

  21. W.S. Lee, C.Y. Liu, and T.N. Sun, Deformation Behavior of Inconel 690 Super Alloy Evaluated by Impact Test, J. Mater. Process. Technol., 2004, 153, p 219–225

    Article  Google Scholar 

  22. W.S. Lee, C.Y. Liu, and T.N. Sun, Dynamic Impact Response and Microstructural Evolution of Inconel 690 Superalloy at Elevated Temperatures, Int. J. Impact Eng., 2005, 32, p 210–223

    Article  Google Scholar 

  23. M.M. Trexler and N.N. Thadhani, Mechanical Properties of Bulk Metallic Glasses, Prog. Mater. Sci., 2010, 55, p 759–839

    Article  Google Scholar 

  24. M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, and O. Biletska, Recent Developments in Ductile Bulk Metallic Glass Composites, MRS Commun., 2013, 3, p 1–12

    Article  Google Scholar 

  25. R.W. Armstrong and S.M. Walley, High Strain Rate Properties of Metals and Alloys, Int. Mater. Rev., 2008, 53, p 105–128

    Article  Google Scholar 

  26. J.W. Qiao, M.Y. Chu, L. Cheng, H.Y. Ye, H.J. Yang, S.G. Ma, and Z.H. Wang, Plastic Flows of In-Situ Metallic Glass Matrix Composites upon Dynamic Loading, Mater. Lett., 2014, 119, p 92–95

    Article  Google Scholar 

  27. H. Li, G. Subhash, L.J. Kecskes, and R.J. Dowding, Mechanical Behavior of Tungsten Preform Reinforced Bulk Metallic Glass Composites, Mater. Sci. Eng. A, 2005, 403, p 134–143

    Article  Google Scholar 

  28. G.R. Johnson and W. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48

    Article  Google Scholar 

  29. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy, Mater. Des., 2015, 86, p 598–602

    Google Scholar 

  30. S.G. Ma, Z.M. Jiao, J.W. Qiao, H.J. Yang, Y. Zhang, and Z.H. Wang, Strain Rate Effects on the Dynamic Mechanical Properties of the AlCrCuFeNi2 High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 649, p 35–38

    Article  Google Scholar 

  31. M.Q. Jiang, Z. Ling, J.X. Meng, and L.H. Dai, Energy Dissipation in Fracture of Bulk Metallic Glasses via Inherent Competition Between Local Softening and Quasi-cleavage, Philos. Mag., 2008, 88, p 407–426

    Article  Google Scholar 

  32. W.F. Ma, H.C. Kou, J.S. Li, H. Chang, and L. Zhou, Effect of Strain Rate on Compressive Behavior of Ti-Based Bulk Metallic Glass at Room Temperature, J. Alloys Compd., 2009, 472, p 214–218

    Article  Google Scholar 

  33. G. Sunny, J. Lewandowski, and V. Prikash, Effects of Annealing and Specimen Geometry on Dynamic Compression of a Zr-Based Bulk Metallic Glass, J. Mater. Res., 2007, 22, p 389–401

    Article  Google Scholar 

  34. G. Subhash, R.J. Dowding, and L.J. Kecskes, Characterization of Uniaxial Compressive Response of Bulk Amorphous Zr–Ti–Cu–Ni–Be Alloy, Mater. Sci. Eng. A, 2002, 334, p 33–40

    Article  Google Scholar 

  35. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang, Effect of Loading Rate on Failure in Zr-Based Bulk Metallic Glass, Mater. Sci. Eng. A, 2008, 473, p 105–110

    Article  Google Scholar 

  36. J.W. Qiao, P. Feng, Y. Zhang, Q.M. Zhang, P.K. Liaw, and G.L. Chen, Quasi-static and Dynamic Deformation Behaviors of In Situ Zr-Based Bulk-Metallic-Glass-Matrix Composites, J. Mater. Res., 2010, 25, p 2264–2270

    Article  Google Scholar 

  37. J.W. Qiao, H.Y. Ye, Y.S. Wang, S. Pauly, H.J. Yang, and Z.H. Wang, Distinguished Work-Hardening Capacity of a Ti-Based Metallic Glass Matrix Composite upon Dynamic Loading, Mater. Sci. Eng. A, 2013, 585, p 277–280

    Article  Google Scholar 

  38. Y.S. Wang, G.J. Hao, J.W. Qiao, Y. Zhang, and J.P. Lin, High Strain Rate Compressive Behavior of Ti-Based Metallic Glass Matrix Composites, Intermetallics, 2014, 52, p 138–143

    Article  Google Scholar 

  39. Y.S. Wang, G.J. Hao, R. Ma, Y. Zhang, J.P. Lin, Z.H. Wang, and J.W. Qiao, Quasi-static and Dynamic Compression Behaviors of Metallic Glass Matrix Composites, Intermetallics, 2015, 60, p 66–71

    Article  Google Scholar 

  40. Y. Kim, S.Y. Shin, J.S. Kim, H. Huh, K.J. Kim, and S. Lee, Dynamic Deformation Behavior of Zr-Based Amorphous Alloy Matrix Composites Reinforced with STS304 or Tantalum Fibers, Metall. Mater. Trans. A, 2012, 43, p 3023–3033

    Article  Google Scholar 

  41. M. Martin, L. Meyer, L. Kecskes, and N.N. Thadhani, Uniaxial and Biaxial Compressive Response of a Bulk Metallic Glass Composite Over a Range of Strain Rates and Temperatures, J. Mater. Res., 2009, 24, p 66–78

    Article  Google Scholar 

  42. C. Chen, Y. Xue, L. Wang, X. Cheng, F. Wang, Z. Wang, H. Zhang, and A. Wang, Effect of Temperature on the Dynamic Mechanical Behaviors of Zr-Based Metallic Glass Reinforced Porous Tungsten Matrix Composite, Adv. Eng. Mater., 2012, 14, p 439–444

    Article  Google Scholar 

  43. C.-Y. Son, G.S. Kim, S.-B. Lee, S.-K. Lee, H.S. Kim, and S. Lee, Correlation of Microstructure with Mechanical Properties of Zr-Based Amorphous Matrix Composite Reinforced with Tungsten Continuous Fibers and Ductile Dendrites, Metall. Mater. Trans. A, 2012, 43, p 4088–4096

    Article  Google Scholar 

  44. E.B. Zaretsky, G.I. Kanel, S.V. Razorenov, and K. Baumung, Impact Strength Properties of Nickel-Based Refractory Superalloys at NORMAL and Elevated Temperatures, Int. J. Impact Eng., 2005, 31, p 41–54

    Article  Google Scholar 

  45. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200

    Article  Google Scholar 

  46. L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Annealing Effects on the Microstructure and Properties of Bulk High-Entropy CoCrFeNiTi0.5 Alloy Casting Ingot, Intermetallics, 2014, 44, p 37–43

    Article  Google Scholar 

  47. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72

    Article  Google Scholar 

  48. Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and Mechanical Properties of Multi-component AlCrFeNiMo x High-Entropy Alloys, J. Alloys Compd., 2013, 573, p 96–101

    Article  Google Scholar 

Download references

Acknowledgments

Z.H.W. would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 11390362), the Top Young Academic Leaders of Shanxi, and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi. J.W.Q. would like to acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51101110 and 51371122) and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (2013). H.J.Y. would like to acknowledge the financial support from the State Key Lab of Advanced Metals and Materials (No. 2013-Z03) and the Youth Science Foundation of Shanxi Province, China (No. 2014021017-3). S.G.M. would like to acknowledge the financial support from the National Science Foundation of China (No. 51501123), the Youth Natural Science Foundation of Shanxi (No. 2015021006), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2105127), and State Key Lab of Advanced Metals and Materials (No. 2015-Z04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. H. Wang or J. W. Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z.M., Ma, S.G., Chu, M.Y. et al. Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading. J. of Materi Eng and Perform 25, 451–456 (2016). https://doi.org/10.1007/s11665-015-1869-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1869-3

Keywords

Navigation