Skip to main content
Log in

Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium-iron manganese phosphates (LiFexMn1−xPO4, 0.1 < x < 0.9) have the merits of high safety and high working voltage. However, they also face the challenges of insufficient conductivity and poor cycling stability. Some progress has been achieved to solve these problems. Herein, we firstly summarized the influence of different electrolyte systems on the electrochemical performance of LiFexMn1−xPO4, and then discussed the effect of element doping, lastly studied the influences of conductive layer coating and morphology control on the cycling stability. Finally, the prospects and challenges of developing high-cycling LiFexMn1−xPO4 were proposed.

Graphical abstract

摘要

磷酸铁锰锂 (LiFexMn1−xPO4, 0.1 < x < 0.9) 具有高安全性和高工作电压的优点。 然而, 它们也面临着导电性不足和循环稳定性差的挑战。 对于这些问题的解决, 目前已经取得了一些进展。 在此, 我们首先总结了不同电解质体系对 LiFexMn1−xPO4 电化学性能的影响, 随后讨论了元素掺杂的影响, 另外概况了导电层包覆和形貌控制对循环稳定性的影响。 最后这篇综述提出了开发高循环 LiFexMn1−xPO4 的前景和挑战。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [39]. Copyright 2014, Elsevier

Fig. 2

Reproduced with permission from Ref. [45]. Copyright 2021, Elsevier

Fig. 3

Reproduced with permission from Ref. [51]. Copyright 2019, Elsevier and Techna Group

Fig. 4

Reproduced with permission from Ref. [56]. Copyright 2017, Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [64]. Copyright 2019, Elsevier

Fig. 6

Reproduced with permission from Ref. [68]. Copyright 2017, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [72]. Copyright 2020, Elsevier

Fig. 8

Reproduced with permission from Ref. [75]. Copyright 2019, Elsevier

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652. https://doi.org/10.1038/451652a.

    Article  CAS  Google Scholar 

  2. Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F. Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources. 2013;230:76. https://doi.org/10.1016/j.jpowsour.2012.12.042.

    Article  CAS  Google Scholar 

  3. Li F, He J, Liu J, Wu M, Hou Y, Wang H, Qi S, Liu Q, Hu J, Ma J. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew Chem Int Ed. 2021;60(12):6600. https://doi.org/10.1002/anie.202013993.

    Article  CAS  Google Scholar 

  4. Huang J, Liu J, He J, Wu M, Qi S, Wang H, Li F, Ma J. Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew Chem Int Ed. 2021;60(38):20717. https://doi.org/10.1002/anie.202107957.

    Article  CAS  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188. https://doi.org/10.1149/1.1837571.

    Article  CAS  Google Scholar 

  6. Herle PS, Ellis B, Coombs N, Nazar LF. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater. 2004;3(3):147. https://doi.org/10.1038/nmat1063.

    Article  CAS  Google Scholar 

  7. Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem Solid ST. 1999;3(4):178. https://doi.org/10.1149/1.1390994.

    Article  Google Scholar 

  8. Gao XL, Liu XH, Xie WL, Zhang LS, Yang SC. Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 2021;40(11):3038. https://doi.org/10.1007/s12598-021-01730-3.

    Article  CAS  Google Scholar 

  9. Yang S, Zhou C, Wang Q, Chen B, Zhao Y, Guo B, Zhang Z, Gao X, Chowdhury R, Wang H, Lai C, Brandon NP, Wu B, Liu X. Highly aligned ultra-thick gel-based cathodes unlocking ultra-high energy density batteries. Energy Environ Mater. 2021. https://doi.org/10.1002/eem2.12252.

    Article  Google Scholar 

  10. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater. 2008;7(8):665. https://doi.org/10.1038/nmat2230.

    Article  CAS  Google Scholar 

  11. Dong Y, Wang L, Zhang S, Zhao Y, Zhou J, Xie H, Goodenough JB. Two-phase interface in LiMnPO4 nanoplates. J Power Sources. 2012;215:116. https://doi.org/10.1016/j.jpowsour.2012.03.077.

    Article  CAS  Google Scholar 

  12. Hong JA, Wang F, Wang XL, Graetz J. LiFexMn1−xPO4: a cathode for lithium-ion batteries. J Power Sources. 2011;196(7):3659. https://doi.org/10.1016/j.jpowsour.2010.12.045.

    Article  CAS  Google Scholar 

  13. Chang XY, Wang ZX, Li XH, Zhang L, Guo HJ, Peng WJ. Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull. 2005;40(9):1513. https://doi.org/10.1016/j.materresbull.2005.04.020.

    Article  CAS  Google Scholar 

  14. Kim SW, Kim J, Gwon H, Kang K. Phase stability study of Li1−xMnPO4 (0 \(\leqslant\) x \(\leqslant\) 1) cathode for Li rechargeable battery. J Electrochem Soc. 2009;156(8):A635. https://doi.org/10.1149/1.3138705.

  15. Chen GY, Richardson TJ. Thermal instability of olivine-type LiMnPO4 cathodes. J Power Sources. 2010;195(4):1221. https://doi.org/10.1016/j.jpowsour.2009.08.046.

    Article  CAS  Google Scholar 

  16. Kosa M, Aurbach D, Major DT. First-principles evaluation of the inherent stabilities of pure LixMPO4 (M=Mn, Fe Co,) and mixed binary LixFeyM’1-yPO4 (M ’=Mn, Co) olivine phosphates. Mater Chem Phys. 2016;174:54. https://doi.org/10.1016/j.matchemphys.2016.01.070.

    Article  CAS  Google Scholar 

  17. Yamada A, Kudo Y, Liu KY. Phase diagram of Lix(MnyFe1−y)PO4 (0 \(\leqslant\) x, y \(\leqslant\) 1). J Electrochem Soc. 2001;148(10):A1153. https://doi.org/10.1149/1.1401083.

  18. Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J. Who will drive electric vehicles, olivine or spinel? Energy Environ Sci. 2011;4(5):1621. https://doi.org/10.1039/C0EE00559B.

    Article  CAS  Google Scholar 

  19. Oh SM, Myung ST, Park JB, Scrosati B, Amine K, Sun YK. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew Chem Int Ed. 2012;51(8):1853. https://doi.org/10.1002/anie.201107394.

    Article  CAS  Google Scholar 

  20. Jo M, Yoo H, Jung YS, Cho J. Carbon-coated nanoclustered LiMn0.71Fe0.29PO4 cathode for lithium-ion batteries. J Power Sources. 2012;216:162. https://doi.org/10.1016/j.jpowsour.2012.05.059.

    Article  CAS  Google Scholar 

  21. Oh SM, Jung HG, Yoon CS, Myung ST, Chen ZH, Amine K, Sun YK. Enhanced electrochemical performance of carbon-LiMn1−xFexPO4 nanocomposite cathode for lithium-ion batteries. J Power Sources. 2011;196(16):6924. https://doi.org/10.1016/j.jpowsour.2010.11.159.

    Article  CAS  Google Scholar 

  22. Pan XL, Xu CY, Zhen L. Synthesis of LiMnPO4 microspheres assembled by plates, wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm. 2012;14(20):6421. https://doi.org/10.1039/C2CE25593F.

    Article  Google Scholar 

  23. Damen L, De Giorgio F, Monaco S, Veronesi F, Mastragostino M. Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1−xFexPO4 (x = 0.2, 0.3) materials for lithium-ion batteries. J Power Sources. 2012;218:250. https://doi.org/10.1016/j.jpowsour.2012.06.090.

    Article  CAS  Google Scholar 

  24. Wang F, Yang J, NuLi YN, Wang JL. Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochim Acta. 2013;103:96. https://doi.org/10.1016/j.electacta.2013.03.201.

    Article  CAS  Google Scholar 

  25. Yang G, Ni HA, Liu HD, Gao P, Ji HM, Roy S, Pinto J, Jiang XF. The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe Co, Gd). J Power Sources. 2011;196(10):4747. https://doi.org/10.1016/j.jpowsour.2011.01.064.

    Article  CAS  Google Scholar 

  26. Luo C, Jiang Y, Zhang X, Ouyang C, Niu X, Wang L. Misfit strains inducing voltage decay in LiMnyFe1−yPO4/C. J Energy Chem. 2022;68:206. https://doi.org/10.1016/j.jechem.2021.11.007.

    Article  CAS  Google Scholar 

  27. Wi S, Park J, Lee S, Kim J, Gil B, Yun AJ, Sung YE, Park B, Kim C. Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy. 2017;39:371. https://doi.org/10.1016/j.nanoen.2017.07.016.

    Article  CAS  Google Scholar 

  28. Ye F, Wang L, He X, Fang M, Dai Z, Wang J, Huang C, Lian F, Wang J, Tian G, Ouyang M. Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: reaction mechanism and electrochemical properties. J Power Sources. 2014;253:143. https://doi.org/10.1016/j.jpowsour.2013.12.010.

    Article  CAS  Google Scholar 

  29. Su P, Zhang H, Yang L, Xing C, Pan S, Lu W, Zhang S. Effects of conductive additives on the percolation networks and rheological properties of LiMn0.7Fe0.3PO4 suspensions for lithium slurry battery. Chem Eng J. 2022;433(2):133203. https://doi.org/10.1016/j.cej.2021.133203.

    Article  CAS  Google Scholar 

  30. Zoller F, Boehm D, Luxa J, Doeblinger M, Sofer Z, Semenenko D, Bein T, Fattakhova-Rohlfing D. Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries. Mater Today Energy. 2020;16:100416. https://doi.org/10.1016/j.mtener.2020.100416.

    Article  Google Scholar 

  31. Yang H, Fu CM, Sun YJ, Wang LN, Liu TX. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon. 2020;158:102. https://doi.org/10.1016/j.carbon.2019.11.067.

    Article  CAS  Google Scholar 

  32. Luo T, Zeng TT, Chen SL, Li R, Fan RZ, Chen H, Han SC, Fan CL. Structure, performance, morphology and component transformation mechanism of LiMn0.8Fe0.2PO4/C nanocrystal with excellent stability. J Alloy Compd. 2020;834:14. https://doi.org/10.1016/j.jallcom.2020.155143.

    Article  CAS  Google Scholar 

  33. Lee H, Kim S, Parmar NS, Song JH, Chung KY, Kim KB, Choi JW. Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries. J Power Sources. 2019;434:8. https://doi.org/10.1016/j.jpowsour.2019.226713.

    Article  CAS  Google Scholar 

  34. Kosova NV, Podgornova OA, Gutakovskii AK. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods. J Alloy Compd. 2018;742:454. https://doi.org/10.1016/j.jallcom.2018.01.242.

    Article  CAS  Google Scholar 

  35. Xie X, Zhang B, Hu G, Du K, Wu J, Wang Y, Gan Z, Fan J, Su H, Cao Y, Peng Z. A new route for green synthesis of LiFe0.25Mn0.75PO4/C@rGO material for lithium ion batteries. J Alloy Compd. 2021;853:157106. https://doi.org/10.1016/j.jallcom.2020.157106.

    Article  CAS  Google Scholar 

  36. Tuo K, Mao L, Ding H, Dong H, Zhang N, Fu X, Huang J, Liang W, Li S, Li C. Boron and phosphorus dual-doped carbon coating Improves electrochemical performances of LiFe0.8Mn0.2PO4 cathode materials. ACS Appl Energ Mater. 2021;4(8):8003. https://doi.org/10.1021/acsaem.1c01318.

    Article  CAS  Google Scholar 

  37. Peng Z, Zhang B, Hu G, Du K, Xie X, Wu K, Wu J, Gong Y, Shu Y, Cao Y. Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochim Acta. 2021;387:138456. https://doi.org/10.1016/j.electacta.2021.138456.

    Article  CAS  Google Scholar 

  38. Cui X, Tuo K, Dong H, Fu X, Wang S, Zhang N, Mao L, Li S. Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material. J Alloy Compd. 2021;885:160946. https://doi.org/10.1016/j.jallcom.2021.160946.

    Article  CAS  Google Scholar 

  39. Kim JK, Vijaya R, Zhu L, Kim Y. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte. J Power Sources. 2015;275:106. https://doi.org/10.1016/j.jpowsour.2014.11.028.

    Article  CAS  Google Scholar 

  40. Zhu Y, Casselman MD, Li Y, Wei A, Abraham DP. Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries. J Power Sources. 2014;246:184. https://doi.org/10.1016/j.jpowsour.2013.07.070.

    Article  CAS  Google Scholar 

  41. Wang H, He J, Liu J, Qi S, Wu M, Wen J, Chen Y, Feng Y, Ma J. Electrolytes enriched by crown ethers for lithium metal batteries. Adv Funct Mater. 2021;31(2):2002578. https://doi.org/10.1002/adfm.202002578.

    Article  CAS  Google Scholar 

  42. Li X, Liu J, He J, Wang H, Qi S, Wu D, Huang J, Li F, Hu W, Ma J. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases. Adv Funct Mater. 2021;31(37):2104395.

    Article  CAS  Google Scholar 

  43. Qi S, Wang H, He J, Liu J, Cui C, Wu M, Li F, Feng Y, Ma J. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci Bull. 2021;66(7):685. https://doi.org/10.1016/j.scib.2020.09.018.

    Article  CAS  Google Scholar 

  44. Zhao Q, Li X, Tang F, Zhao D, Du S, Geng S, Tian Y, Li S. Compatibility between lithium bis(oxalate)borate-based electrolytes and a LiFe0.6Mn0.4PO4/C cathode for lithium-ion batteries. Energy Technol. 2017;5(3):406. https://doi.org/10.1002/ente.201600307.

    Article  CAS  Google Scholar 

  45. Yao M, Zhang H, Xing C, Li Q, Tang Y, Zhang F, Yang K, Zhang S. Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Stor Mater. 2021;41:51. https://doi.org/10.1016/j.ensm.2021.05.049.

    Article  Google Scholar 

  46. Yu H, Han JS, Hwang GC, Cho JS, Kang DW, Kim JK. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries. Electrochim Acta. 2021;365:137349. https://doi.org/10.1016/j.electacta.2020.137349.

    Article  CAS  Google Scholar 

  47. Li S, Meng X, Yi Q, Antonio Alonso J, Fernandez-Diaz MT, Sun C, Wang ZL. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy. 2018;52:510. https://doi.org/10.1016/j.nanoen.2018.08.007.

    Article  CAS  Google Scholar 

  48. Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl Mater Inter. 2018;10(16):13588. https://doi.org/10.1021/acsami.8b02240.

    Article  CAS  Google Scholar 

  49. Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy. 2016;28:447. https://doi.org/10.1016/j.nanoen.2016.09.002.

    Article  CAS  Google Scholar 

  50. Wang Q, Cui Z, Zhou Q, Shangguan X, Du X, Dong S, Qiao L, Huang S, Liu X, Tang K, Zhou X, Cui G. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Stor Mater. 2020;25:756. https://doi.org/10.1016/j.ensm.2019.09.010.

    Article  Google Scholar 

  51. Li R, Fan CL, Zhang WH, Tan MC, Zeng TT, Han SC. Structure and performance of Na+ and Fe2+ co-doped Li1−xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries. Ceram Int. 2019;45(8):10501. https://doi.org/10.1016/j.ceramint.2019.02.112.

    Article  CAS  Google Scholar 

  52. Jang D, Palanisamy K, Yoon J, Kim Y, Yoon WS. Crystal and local structure studies of LiFe0.48Mn0.48Mg0.04PO4 cathode material for lithium rechargeable batteries. J Power Sources. 2013;244:581.

    Article  CAS  Google Scholar 

  53. Fang HS, Dai ER, Yang B, Yao YC, Ma WH. LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries. J Power Sources. 2012;204:193. https://doi.org/10.1016/j.jpowsour.2011.12.046.

    Article  CAS  Google Scholar 

  54. Ouyang CY, Shi SQ, Wang ZX, Li H, Huang XJ, Chen LQ. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J Phys Condens Matter. 2004;16(13):2265. https://doi.org/10.1088/0953-8984/16/13/007.

    Article  CAS  Google Scholar 

  55. Qiao SP, Zhu LZ, Han ES, Li LN, Du CY, He YZ. Synthesis and electrochemical properties of Na and Mg co-doped LiFe0.65Mn0.35PO4/C cathode materials for lithium-ion batteries. Int J Electrochem Sci. 2019;14(12):11616.

    Article  CAS  Google Scholar 

  56. Xiao P, Cai YY, Chen XP, Sheng ZM, Chang CK. Improved electrochemical performance of LiFe0.4Mn0.6PO4/C with Cr3+ doping. RSC Adv. 2017;7(50):31558.

    Article  CAS  Google Scholar 

  57. de Dompablo MEA, Amador U, Tarascon JM. A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J Power Sources. 2007;174(2):1251. https://doi.org/10.1016/j.jpowsour.2007.06.178.

    Article  CAS  Google Scholar 

  58. Yu X, Li Q, Liu Q, Lei X, Song D, Zhang H, Shi X, Zhang L. Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4–yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries. J Mater Res. 2019;35(1):2. https://doi.org/10.1557/jmr.2019.326.

    Article  CAS  Google Scholar 

  59. Wang Y, Yang H, Wu CY, Duh JG. Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries. J Mater Chem A. 2017;5(35):18674. https://doi.org/10.1039/c7ta05942f.

    Article  CAS  Google Scholar 

  60. Huang QY, Wu Z, Su J, Long YF, Lv XY, Wen YX. Synthesis and electrochemical performance of Ti–Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram Int. 2016;42(9):11348. https://doi.org/10.1016/j.ceramint.2016.04.057.

    Article  CAS  Google Scholar 

  61. Yi HH, Hu CL, Fang HS, Yang B, Yao YC, Ma WH, Dai YN. Optimized electrochemical performance of LiMn0.9Fe0.1−xMgxPO4/C for lithium ion batteries. Electrochim Acta. 2011;56(11):4052. https://doi.org/10.1016/j.electacta.2011.01.121.

    Article  CAS  Google Scholar 

  62. Liu S, Fang HS, Dai ER, Yang B, Yao YC, Ma WH, Dai YN. Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim Acta. 2014;116:97. https://doi.org/10.1016/j.electacta.2013.11.052.

    Article  CAS  Google Scholar 

  63. Duan JG, Hu GR, Cao YB, Du K, Peng ZD. Synthesis of high-performance Fe–Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics. 2016;22(5):609. https://doi.org/10.1007/s11581-015-1582-0.

    Article  CAS  Google Scholar 

  64. Ding D, Maeyoshi Y, Kubota M, Wakasugi J, Kanamura K, Abe H. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries. J Power Sources. 2020;449:7. https://doi.org/10.1016/j.jpowsour.2019.227553.

    Article  CAS  Google Scholar 

  65. Yang J, Tan R, Li D, Ma JM, Duan XC. Ionic liquid assisted electrospinning of porous LiFe0.4Mn0.6PO4/CNFs as free-standing cathodes with a pseudocapacitive contribution for high-performance lithium-ion batteries. Chem Eur J. 2020;26(24):5341. https://doi.org/10.1002/chem.201905140.

    Article  CAS  Google Scholar 

  66. Li ZF, Ren X, Tian WC, Zheng Y, An LW, Sun JC, Ding RA, Wen LZ, Wang L, Liang GC. LiMn0.6Fe0.4PO4/CA cathode materials with carbon aerogel as additive synthesized by wet ball-milling combined with spray drying. J Electrochem Soc. 2020;167(9):9. https://doi.org/10.1149/1945-7111/ab819e.

    Article  CAS  Google Scholar 

  67. Fan RZ, Fan CL, Hu Z, Zeng TT, Zhang WH, Han SC, Liu JS. Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries. J Alloy Compd. 2021;876:160090. https://doi.org/10.1016/j.jallcom.2021.160090.

    Article  CAS  Google Scholar 

  68. Yan X, Sun DY, Wang YQ, Zhang ZQ, Yan WC, Jiang JC, Ma FR, Liu J, Jin YC, Kanamura K. Enhanced electrochemical performance of LiMn0.75Fe0.25PO4 nanoplates from multiple interface modification by using fluorine-doped carbon coating. ACS Sustain Chem Eng. 2017;5(6):4637. https://doi.org/10.1021/acssuschemeng.6b03163.

    Article  CAS  Google Scholar 

  69. Su CY, Wu CY, Hsu SY, Wu CY, Duh JG. Improving the electrochemical performance of LiMn0.8Fe0.2PO4 cathode with nitrogen-doped carbon via dielectric barrier discharge plasma. Mater Lett. 2020;272:127880. https://doi.org/10.1016/j.matlet.2020.127880.

    Article  CAS  Google Scholar 

  70. Guo LQ, Ren L, Wan L, Li JS. Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Appl Surf Sci. 2019;476:513. https://doi.org/10.1016/j.apsusc.2018.12.227.

    Article  CAS  Google Scholar 

  71. Chen W, Xu D, Chen Y, Tang T, Kuang S, Fu H, Zhou W, Yu X. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1−xMnxPO4(M = Li, Na) as a high performance cathode for lithium/sodium-ion batteries. Adv Mater Interfaces. 2020;7(19):2000684. https://doi.org/10.1002/admi.202000684.

    Article  CAS  Google Scholar 

  72. Yu M, Li J, Ning X. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochim Acta. 2021;368:137597. https://doi.org/10.1016/j.electacta.2020.137597.

    Article  CAS  Google Scholar 

  73. Chang H, Li Y, Fang ZK, Qu JP, Zhu YR, Yi TF. Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites for high-performance Li-ion batteries. ACS Appl Mater Inter. 2021;13(28):33102. https://doi.org/10.1021/acsami.1c08373.

    Article  CAS  Google Scholar 

  74. Yi TF, Li Y, Fang ZK, Cui P, Luo SH, Xie Y. Improving the cycling stability and rate capability of LiMn0.5Fe0.5PO4/C nanorod as cathode materials by LiAlO2 modification. J Materiom. 2020;6(1):33. https://doi.org/10.1016/j.jmat.2019.11.005.

    Article  Google Scholar 

  75. Zhang X, Hou M, Tamirate AG, Zhu H, Wang C, Xia Y. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries. J Power Sources. 2020;448(1):227438. https://doi.org/10.1016/j.jpowsour.2019.227438.

    Article  CAS  Google Scholar 

  76. Ruan TT, Wang B, Wang F, Song RS, Jin F, Zhou Y, Wang DL, Dou SX. Stabilizing the structure of LiMn0.5Fe0.5PO4 via the formation of concentration-gradient hollow spheres with Fe-rich surfaces. Nanoscale. 2019;11(9):3933. https://doi.org/10.1039/c8nr10224d.

    Article  CAS  Google Scholar 

  77. Zhang H, Wei ZK, Jiang JJ, Wang L, Wan Q, Chen T, Qu MZ, Chen MZ. Three dimensional nano-LiMn0.6Fe0.4PO4@C/CNT as cathode materials for high-rate lithium-ion batteries. J Energy Chem. 2018;27(2):544. https://doi.org/10.1016/j.jechem.2017.11.006.

    Article  Google Scholar 

  78. Hou YK, Pan GL, Sun YY, Gao XP. LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries. ACS Appl Mater Inter. 2018;10(19):16500. https://doi.org/10.1021/acsami.8b02736.

    Article  CAS  Google Scholar 

  79. Zhang Y, Ma Q, Wang S, Liu X, Li L. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano. 2018;12(5):4824. https://doi.org/10.1021/acsnano.8b01549.

    Article  CAS  Google Scholar 

  80. Wang Y, Niu P, Li J, Wang S, Li L. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Stor Mater. 2021;34:436. https://doi.org/10.1016/j.ensm.2020.10.003.

    Article  Google Scholar 

  81. Zhang LS, Gao XL, Liu XH, Zhang ZJ, Cao R, Cheng HC, Wang MY, Yan XY, Yang SC. CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Met. 2022;41:1477. https://doi.org/10.1007/s12598-021-01925-8.

    Article  CAS  Google Scholar 

  82. Li X, Qian Y, Liu T, Cao F, Zang Z, Sun X, Sun S, Niu Q, Wu J. Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets. J Mater Sci. 2018;53(15):11078. https://doi.org/10.1007/s10853-018-2398-x.

    Article  CAS  Google Scholar 

  83. Deng ZW, Wang Q, Peng DC, Liu HB, Chen YX. Fast precipitation-induced LiFe0.5Mn0.5PO4/C nanorods with a fine size and large exposure of the (010) faces for high-performance lithium-ion batteries. J Alloy Compd. 2019;794:178. https://doi.org/10.1016/j.jallcom.2019.04.184.

    Article  CAS  Google Scholar 

  84. Budumuru AK, Viji M, Jena A, Nanda BRK, Sudakar C. Mn substitution controlled Li-diffusion in single crystalline nanotubular LiFePO4 high rate-capability cathodes: experimental and theoretical studies. J Power Sources. 2018;406:50. https://doi.org/10.1016/j.jpowsour.2018.10.020.

    Article  CAS  Google Scholar 

  85. Xiong JW, Wang YZ, Wang YY, Zhang X. PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C nanorods as cathode material for lithium ion batteries. Ceram Int. 2016;42(7):9018. https://doi.org/10.1016/j.ceramint.2016.02.156.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51971090 and U21A20311).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu Li, Xi-Yong Chen, Hong-Qun Tang or Xin-Hua Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, ZX., Li, X. et al. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Met. 42, 740–750 (2023). https://doi.org/10.1007/s12598-022-02107-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02107-w

Keywords

Navigation