Skip to main content

Advertisement

Log in

Nanocarbon-based electrode materials applied for supercapacitors

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As one of the promising energy storage and conversion systems, supercapacitors (SCs) are highly favored owing to their high power density and good service life. Among all the key components of supercapacitor devices, the design and investigation of electrode materials play an essential role in determining the whole electrochemical charge storage performance. Recently, nanocarbon-based materials (e.g., graphene, carbon dots, graphene quantum dots, etc.) have been widely used as SC electrode materials because of their good physical structure and chemical properties, providing a new route to further improve the energy density and life span of SCs. Here, we review the latest progress of nanocarbon-based materials (including nanocarbon and nanocarbon-based composite materials) as electrode materials in SCs application. The recent progress of carbon dots, graphene, carbon nanotubes, and other nanocarbon materials electrodes is summarized, while the capacitance and energy density of the above nanocarbon electrodes still need to be improved. Then, the preparation and performance of nanocarbon-based composite electrodes comprising transition metal oxides, conductive polymer, and metal–organic framework derived porous carbon are reviewed. Finally, we outline major challenges and propose some ideas on building better nanocarbon-based SC electrodes.

Graphic Abstract

摘要

超级电容器 (SCs) 作为有前途的储能和转换系统之一, 因其高功率密度和良好的使用寿命而备受青睐。在超级电容器器件的所有关键部件中, 电极材料的设计和研究在决定整个电化学电荷存储性能方面起着至关重要的作用。近年来, 纳米碳基材料 (包括石墨烯, 碳点和石墨烯量子点等) 因其独特的物理结构和化学性质被广泛用作SC电极材料, 为进一步提高超级电容器能量密度和寿命提供了新途径。本文概述了纳米碳基材料 (包括纳米碳和纳米碳基复合材料) 作为电极材料在SC应用中的最新进展。在“全碳复合材料”部分, 我们简要介绍了碳点, 石墨烯, 碳纳米管等纳米碳材料电极的最新进展。而上述纳米碳电极的电容和能量密度仍有待提高。在“复合电极材料”部分, 综述了由过渡金属氧化物, 导电聚合物和金属有机骨架 (MOF) 衍生的多孔碳组成的纳米碳基复合电极的制备和性能。最后, 我们总结了本领域面临的一些主要挑战, 并提出了一些关于在 超级电容器 应用中构建更好的碳基纳米材料电极的想法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [33]. Copyright 2017, Wiley–VCH

Fig. 2

Reproduced with permission from Ref. [78]. Copyright 2015, Wiley–VCH

Fig. 3

Reproduced with permission from Ref. [80]. Copyright 2018, John Wiley & Sons

Fig. 4

Reproduced with permission from Ref. [84]. Copyright 2019, Elsevier B.V

Fig. 5

Reproduced with permission from Ref. [89]. Copyright 2020, American Chemical Society

Fig. 6
Fig. 7

Reproduced with permission from Ref. [117]. Copyright 2017, Elsevier

Similar content being viewed by others

References

  1. Winter M, Brodd R. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004;104(10):4245. https://doi.org/10.1021/cr020730k.

    Article  CAS  Google Scholar 

  2. Salunkhe R, Tang J, Kamachi Y, Nakato T, Kim J, Yamauchi Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano. 2015;9(6):6288. https://doi.org/10.1021/acsnano.5b01790.

    Article  CAS  Google Scholar 

  3. Holdren J. Energy and sustainability. Science. 2007;315(5813):737. https://doi.org/10.1126/science.1139792.

    Article  CAS  Google Scholar 

  4. Wang H, Dai H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev. 2013;42(7):3088. https://doi.org/10.1039/c2cs35307e.

    Article  CAS  Google Scholar 

  5. Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013;2(2):213. https://doi.org/10.1016/j.nanoen.2012.10.006.

    Article  CAS  Google Scholar 

  6. An K, Kim W, Park Y, Moon J, Bae D, Lim S, Lee Y, Lee Y. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater. 2001;11(5):387. https://doi.org/10.1002/1616-3028(200110)11:5%3c387::AID-ADFM387%3e3.0.CO;2-G.

    Article  CAS  Google Scholar 

  7. Zhang Z, Xiao F, Qian L, Wang S, Liu Y. Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv Energy Mater. 2014;4(10):1400064. https://doi.org/10.1002/aenm.201400064.

    Article  CAS  Google Scholar 

  8. Wei WF, Cui XW, Chen WX, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev. 2011;40(3):1697. https://doi.org/10.1039/c0cs00127a.

    Article  CAS  Google Scholar 

  9. Hu C, Chang K, Lin M, Wu Y. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006;6(12):2690. https://doi.org/10.1021/nl061576a.

    Article  CAS  Google Scholar 

  10. Ghodbane O, Pascal J, Favier F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interf. 2009;1(5):1130. https://doi.org/10.1021/am900094e.

    Article  CAS  Google Scholar 

  11. Kou TY, Yao B, Liu TY, Li Y. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J Mater Chem A. 2017;5(33):17151. https://doi.org/10.1039/c7ta05003h.

    Article  CAS  Google Scholar 

  12. Meng QF, Cai KF, Chen YX, Chen LD. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017;36:268. https://doi.org/10.1016/j.nanoen.2017.04.040.

    Article  CAS  Google Scholar 

  13. Guo RT, Li L, Wang BW, Xiang YG, Zou GQ, Zhu YR, Hou HS, Ji XB. Functionalized carbon dots for advanced batteries. Energy Storage Mater. 2021;37:8. https://doi.org/10.1016/j.ensm.2021.01.020.

    Article  Google Scholar 

  14. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature. 1985;318:162. https://doi.org/10.1038/318162a0.

    Article  CAS  Google Scholar 

  15. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56. https://doi.org/10.1038/354056a0.

    Article  CAS  Google Scholar 

  16. Chen YL, Du LH, Yang PH, Sun P, Yu X, Ma WJ. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources. 2015;287:68. https://doi.org/10.1016/j.jpowsour.2015.04.026.

    Article  CAS  Google Scholar 

  17. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666. https://doi.org/10.1126/science.1102896.

    Article  CAS  Google Scholar 

  18. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197. https://doi.org/10.1038/nature04233.

    Article  CAS  Google Scholar 

  19. Wang SY, Neerav K, Eduardo CG, Feng XL, Klaus M, Vincent M, Roman F, Pascal R. Quantum dots in graphene nanoribbons. Nano Lett. 2017;17(7):4277. https://doi.org/10.1021/acs.nanolett.7b01244.

    Article  CAS  Google Scholar 

  20. Bak S, Kim DY, Lee HY. Graphene quantum dots and their possible energy applications: a review. Curr Appl Phys. 2016;16:1192.

    Article  Google Scholar 

  21. Lim SY, Shen W, Gao ZQ. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362. https://doi.org/10.1039/C4CS00269E.

    Article  CAS  Google Scholar 

  22. Abdelhakim E, Jesica CQ, Jose FV, Agustín F, Pérez C, Francisco JM, Francisco CM. Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors. Chem Eng J. 2018;334:18351841. https://doi.org/10.1016/j.cej.2017.11.141.

    Article  CAS  Google Scholar 

  23. Zhu BJ, Liu B, Qu C, Zhang H, Guo WH, Liang ZB, Chen F, Zou RQ. Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. J Mater Chem A. 2018;6:1523. https://doi.org/10.1039/c7ta09608a.

    Article  CAS  Google Scholar 

  24. Chen XF, Zhang JY, Zhang B, Dong SM, Guo XC, Mu XD, Fei BH. A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Sci Rep. 2017;7:7362. https://doi.org/10.1038/s41598-017-06730-x.

    Article  CAS  Google Scholar 

  25. Zhou X, Wang PL, Zhang YG, Wang LL, Zhang LT, Zhang L, Xu L, Liu L. Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J Mater Chem A. 2017;5:12958. https://doi.org/10.1039/c7ta02113e.

    Article  CAS  Google Scholar 

  26. Liu WJ, Tian K, Ling LL, Yu HQ, Jiang H. Use of nutrient rich hydrophytes to create N, P-dually doped porous carbon with robust energy storage performance. Environ Sci Technol. 2016;50(22):12421. https://doi.org/10.1021/acs.est.6b03051.

    Article  CAS  Google Scholar 

  27. Wei XJ, Li YB, Gao SY. Correction: Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J Mater Chem A. 2017;5:181. https://doi.org/10.1039/c7ta90196h.

    Article  CAS  Google Scholar 

  28. Shan DD, Yang J, Liu W, Yan J, Fan ZJ. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J Mater Chem A. 2016;4:13589. https://doi.org/10.1039/c6ta05406d.

    Article  CAS  Google Scholar 

  29. Kang DM, Liu QL, Gu JJ, Su YS, Zhang W, Zhang D. “Egg-Box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano. 2015;9:11225. https://doi.org/10.1021/acsnano.5b04821.

    Article  CAS  Google Scholar 

  30. Chen C, Yu DF, Zhao GY, Du BS, Tang W, Sun L, Sun Y, Flemming B, Yu M. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy. 2016;27:377. https://doi.org/10.1016/j.nanoen.2016.07.020.

    Article  CAS  Google Scholar 

  31. Chen LF, Feng Y, Liang HW, Wu ZY, Yu SH. Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv Energy Mater. 2017;7:1700826. https://doi.org/10.1002/aenm.201700826.

    Article  CAS  Google Scholar 

  32. Sevilla M, Ferrero GA, Fuertes AB. One-pot synthesis of biomass-based hierarchical porous carbons with a large porosity development. Chem Mater. 2017;29:6900. https://doi.org/10.1021/acs.chemmater.7b02218.

    Article  CAS  Google Scholar 

  33. Choudhary N, Li C, Moore JL, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices. Adv Mater. 2017;29:1605336. https://doi.org/10.1002/adma.201605336.

    Article  CAS  Google Scholar 

  34. Futaba DN, Hata KJ, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Lijima S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes. Nat Mater. 2006;5:987. https://doi.org/10.1038/nmat1782.

    Article  CAS  Google Scholar 

  35. Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008;8:2664. https://doi.org/10.1021/nl800925j.

    Article  CAS  Google Scholar 

  36. Zheng HJ, Wang JX, Jia Y, Ma CN. In-situ synthetize multiwalled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J Power Sources. 2012;216:508. https://doi.org/10.1016/j.jpowsour.2012.06.047.

    Article  CAS  Google Scholar 

  37. Shin SH, Park DH, Jung JY, Lee MH, Nah J. Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature sensing. ACS Appl Mater Interf. 2017;9:9233. https://doi.org/10.1021/acsami.7b00380.

    Article  CAS  Google Scholar 

  38. Soni R, Bhange SN, Athira E, Chetry R, Kurungot S. Synthesis of ultrathin PEDOT on carbon nanotubes and shear thinning xanthan gum-H2SO4 gel electrolyte for supercapacitors. ChemElectroChem. 2019;6:1861. https://doi.org/10.1002/celc.201801780.

    Article  CAS  Google Scholar 

  39. Wang HR, Zhou HW, Gao M, Zhu YA, Liu HT, Gao L, Wu MX. Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochim Acta. 2019;298:552. https://doi.org/10.1016/j.electacta.2018.12.070.

    Article  CAS  Google Scholar 

  40. Wang Y, Shi Z, Huang Y, Ma YF, Wang CY, Chen YY, Chen YS. Supercapacitor devices based on graphene materials. J Phys Chem C. 2009;113:13103. https://doi.org/10.1021/jp902214f.

    Article  CAS  Google Scholar 

  41. Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors. J Power Sources. 2006;157:11. https://doi.org/10.1016/j.jpowsour.2006.02.065.

    Article  CAS  Google Scholar 

  42. Hantel M, Kaspar T, Nesper R, Wokaun A, Kötz R. Partially reduced graphite oxide as an electrode material for electrochemical double-layer capacitors. Chem-Eur J. 2012;18(29):9125. https://doi.org/10.1002/chem.201200702.

    Article  CAS  Google Scholar 

  43. Hantel M, Kaspar T, Nesper R, Wokaun A, Kötz R. Partially reduced graphite oxide for supercapacitor electrodes: effect of graphene layer spacing and huge specific capacitance. Electrochem Commun. 2011;13(1):90. https://doi.org/10.1016/j.elecom.2010.11.021.

    Article  CAS  Google Scholar 

  44. Kuila T, Mishra A, Khanra P, Kim N, Lee J. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale. 2013;5(1):52. https://doi.org/10.1039/c2nr32703a.

    Article  CAS  Google Scholar 

  45. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS. Supercapacitor devices based on graphene materials. J Phys Chem C. 2009;113(30):13103. https://doi.org/10.1021/jp902214f.

    Article  CAS  Google Scholar 

  46. Hummers WS, Richard EO. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. https://doi.org/10.1021/ja01539a017.

    Article  CAS  Google Scholar 

  47. Ranjithkumar R, Arasi SE, Sudhahar S, Nallamuthu N, Devendran P, Lakshmanan P, Kumar MK. Enhanced electrochemical studies of ZnO/CNT nanocomposite for supercapacitor devices. Phys B-Condens Matter. 2019;568:51. https://doi.org/10.1016/j.physb.2019.05.025.

    Article  CAS  Google Scholar 

  48. Zhang JT, Jiang JW, Zhao XS. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C. 2011;115(14):6448. https://doi.org/10.1021/jp200724h.

    Article  CAS  Google Scholar 

  49. Wang X, Liu XL, Chen K. Effect of different conductive additives on the electrochemical properties of mesoporous MnO2 nanotubes. Int J Electrochem Sci. 2016;11(8):6808. https://doi.org/10.20964/2016.08.26.

    Article  CAS  Google Scholar 

  50. Kim J, Khoh W, Wee B, Hong J. Fabrication of flexible reduced graphene oxide-TiO2 freestanding films for supercapacitor application. RSC Adv. 2015;5(13):9904. https://doi.org/10.1039/c4ra12980f.

    Article  CAS  Google Scholar 

  51. Liu YP, Gao TT, Xiao H, Guo WJ, Sun B, Pei MS, Zhou GW. One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-eflciency dye adsorbents. Electrochim Acta. 2017;229:239. https://doi.org/10.1016/j.electacta.2017.01.142.

    Article  CAS  Google Scholar 

  52. Nagaraju P, Alsalme A, Alswieleh A, Jayavel R. Facile in-situ microwave irradiation synthesis of TiO2/graphene nanocomposite for high-performance supercapacitor applications. J Electroanal Chem. 2018;808:90. https://doi.org/10.1016/j.jelechem.2017.11.068.

    Article  CAS  Google Scholar 

  53. Lu XP, Hu YT, Wang L, Guo QH, Chen SH, Chen SL, Hou HQ, Song YH. Macroporous carbon/nitrogen-doped carbon nanotubes/polyaniline nanocomposites and their application in supercapacitors. Electrochim Acta. 2016;189:158. https://doi.org/10.1016/j.electacta.2015.12.099.

    Article  CAS  Google Scholar 

  54. Hai ZY, Gao LB, Zhang Q, Xu HY, Cui DF, Zhang ZX, Tsoukalas D, Tang J, Yan SB, Xue CY. Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl Surf Sci. 2016;361:57. https://doi.org/10.1016/j.apsusc.2015.11.171.

    Article  CAS  Google Scholar 

  55. Chi K, Zhang ZY, Xi JB, Huang YG, Xiao F, Wang S, Liu YQ. Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interf. 2014;6(18):16312. https://doi.org/10.1021/am504539k.

    Article  CAS  Google Scholar 

  56. Camacho C, Mesquita J, Rodrigues J. Electrodeposition of polyaniline on self-assembled monolayers on graphite for the voltammetric detection of iron (II). Mater Chem Phys. 2016;184:261. https://doi.org/10.1016/j.matchemphys.2016.09.050.

    Article  CAS  Google Scholar 

  57. Park JH, Ko JM, Park O, Kim DW. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J Power Sources. 2002;105:20. https://doi.org/10.1016/s0378-7753(01)00915-6.

    Article  CAS  Google Scholar 

  58. Park JH, Park O, Shin KH, Jin CS, Kim JH. An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid-State Lett. 2002;5:7. https://doi.org/10.1149/1.1432245.

    Article  CAS  Google Scholar 

  59. Zhang HQ, Hu ZQ, Li M, Hu LW, Jiao SQ. A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J Mater Chem A. 2014;2:17024. https://doi.org/10.1039/c4ta03369h.

    Article  CAS  Google Scholar 

  60. Chen CJ, Zhang Y, Li YJ, Dai JQ, Song JW, Yao YG, Gong YH, Kierzewski I, Xie J, Hu LB. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci. 2017;10:538. https://doi.org/10.1039/c6ee03716j.

    Article  CAS  Google Scholar 

  61. Zhao GY, Chen C, Yu DF, Sun L, Yang CH, Zhang H, Sun Y, Besenbacher F, Yu M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy. 2018;47:547. https://doi.org/10.1016/j.nanoen.2018.03.016.

    Article  CAS  Google Scholar 

  62. Peng ZY, Zou YB, Xu SQ, Zhong WB, Yang WT. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Appl Mater Interf. 2018;10:22190. https://doi.org/10.1021/acsami.8b05171.

    Article  CAS  Google Scholar 

  63. Liu MY, Niu J, Zhang ZP, Dou ML, Wang F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy. 2018;51:366. https://doi.org/10.1016/j.nanoen.2018.06.037.

    Article  CAS  Google Scholar 

  64. Wang B, Wang YH, Peng YY, Wang X, Wang NX, Wang J, Zhao JB. Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage. Chem Eng J. 2018;348:850. https://doi.org/10.1016/j.cej.2018.05.061.

    Article  CAS  Google Scholar 

  65. Tian OY, Cheng K, Yang F, Zhou LM, Zhu K, Ye K, Wang GL, Cao DX. From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J Mater Chem A. 2017;5:14551. https://doi.org/10.1039/c7ta02412f.

    Article  CAS  Google Scholar 

  66. Liu Y, Shi ZJ, Gao YF, An WD, Cao ZZ, Liu GR. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces. 2016;8:28283. https://doi.org/10.1021/acsami.5b11558.

    Article  CAS  Google Scholar 

  67. Jiang LL, Sheng LZ, Chen X, Wei T, Fan ZJ. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J Mater Chem A. 2016;4:11388. https://doi.org/10.1039/c6ta02570f.

    Article  CAS  Google Scholar 

  68. Hou JH, Cao CB, Idrees F, Ma XL. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015;9:2556. https://doi.org/10.1021/nn506394r.

    Article  CAS  Google Scholar 

  69. Wang HL, Xu ZW, Li Z, Alireza K, Cui C, Tan XH, Stephenson TJ, Cecil K, Chris H, Brian O, Jin KT, Don H, Anthony A, David M. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano. 2013;7:5131. https://doi.org/10.1021/nn400731g.

    Article  CAS  Google Scholar 

  70. Sun L, Tian CG, Li MT, Meng XY, Wang L, Wang RH, Yin J, Fu HG. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A. 2013;1:6462. https://doi.org/10.1039/c3ta10897j.

    Article  CAS  Google Scholar 

  71. Hou JH, Cao CB, Ma XL, Idress F, Xu B, Hao X, Lin W. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci Rep. 2014;4:7260. https://doi.org/10.1038/srep07260.

    Article  CAS  Google Scholar 

  72. Wang JM, Fang ZB, Li T, Sajid UH, Luo QH, Chen P, Hu L, Zhang FP, Wang QY, Bi H. Highly hydrophilic carbon dots’ decoration on NiCo2O4 nanowires for greatly increased electric conductivity, supercapacitance, and energy density. Adv Mater Interf. 2019;6:1900049. https://doi.org/10.1002/admi.201900049.

    Article  CAS  Google Scholar 

  73. Zhang S, Sui LN, Dong HZ, He WB, Dong LF, Yu LY. High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl Mater Interfaces. 2018;10:12983. https://doi.org/10.1021/acsami.8b00323.

    Article  CAS  Google Scholar 

  74. Liu WW, Feng YQ, Yan XB, Chen JT, Xue QJ. Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater. 2013;23:4111. https://doi.org/10.1002/adfm.201203771.

    Article  CAS  Google Scholar 

  75. Hassan M, Haque E, Reddy KR, Minett AI, Chen J, Gomes VG. Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale. 2014;6:11988. https://doi.org/10.1039/c4nr02365j.

    Article  CAS  Google Scholar 

  76. Vijay B, Arie B, Boris M, Doron A, Aharon G, Michael T, Zeev P. Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors. J Phys Chem C. 2016;120(25):13406. https://doi.org/10.1021/acs.jpcc.6b04045.

    Article  CAS  Google Scholar 

  77. Li Q, Cheng H, Wu X, Wang CF, Wu G, Chen S. Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. J Mater Chem A. 2018;6:14112. https://doi.org/10.1039/c8ta02124d.

    Article  CAS  Google Scholar 

  78. Jiang LL, Sheng LZ, Long CL, Wei T, Fan ZJ. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater. 2015;5(15):1500771. https://doi.org/10.1002/aenm.201500771.

    Article  CAS  Google Scholar 

  79. Dong Q, Wang G, Hu H, Yang J, Qian BQ, Ling Z, Qiu JS. Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. J Power Sources. 2013;243:350. https://doi.org/10.1016/j.jpowsour.2013.06.060.

    Article  CAS  Google Scholar 

  80. Luo HL, Xiong PX, Xie J, Yang ZW, Huang Y, Hu JM, Wan YZ, Xu YH. Uniformly dispersed freestanding carbon nanofiber/graphene electrodes made by a scalable biological method for high-performance flexible supercapacitors. Adv Funct Mater. 2018;28:1803075. https://doi.org/10.1002/adfm.201803075.

    Article  CAS  Google Scholar 

  81. Tang C, Zhao K, Tang YF, Li FP, Meng QN. Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochim Acta. 2021;375:137960. https://doi.org/10.1016/j.electacta.2021.137960.

    Article  CAS  Google Scholar 

  82. Díez N, Botas C, Mysyk R, Goikolea E, Rojo T, Carriazo D. Highly packed graphene-CNT films as electrodes for aqueous supercapacitors with high volumetric performance. J Mater Chem A. 2018;6(8):3667. https://doi.org/10.1039/c7ta10210k.

    Article  CAS  Google Scholar 

  83. Zhu S, Li JJ, Li QF, He CN, Liu EZ, He F, Shi CS, Zhao NQ. Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets Line-in-Wall hybrids and their electrochemical energy storage applications. Electrochim Acta. 2016;212:621. https://doi.org/10.1016/j.electacta.2016.07.065.

    Article  CAS  Google Scholar 

  84. Fu XY, Liu L, Yu YF, Lv HJ, Zhang Y, Hou SL, Chen AB. Hollow carbon spheres/hollow carbon nanorods composites as electrode materials for supercapacitor. J Taiwan Ins Chem E. 2019;101:244. https://doi.org/10.1016/j.jtice.2019.04.043.

    Article  CAS  Google Scholar 

  85. Li FF, Wang XL, Sun RC. A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J Mater Chem A. 2017;5:20643. https://doi.org/10.1039/c7ta03789a.

    Article  CAS  Google Scholar 

  86. Hu WX, Xiang RF, Zhang K, Xu QL, Liu Y, Jing YY, Zhang J, Hu XF, Zheng YY, Jin YH, Yang XN, Lu CH. Electrochemical performance of coaxially wet-spun hierarchically porous lignin-based carbon/graphene fiber electrodes for flexible supercapacitors. ACS Appl Energy Mater. 2021;4:9077. https://doi.org/10.1021/acsaem.1c01379.

    Article  CAS  Google Scholar 

  87. Kang YJ, Chun SJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano. 2012;6:6400. https://doi.org/10.1021/nn301971r.

    Article  CAS  Google Scholar 

  88. Liu SL, Xu JS, Zhu JX, Chang YQ, Wang HG, Liu ZC, Xu Y, Zhang C, Liu TX. Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities. J Mater Chem A. 2017;5:19997. https://doi.org/10.1039/c7ta04952h.

    Article  CAS  Google Scholar 

  89. Zhu MN, Liu H, Cao QP, Zheng H, Xu D, Guo HY, Wang SM, Li Y, Zhou JH. Electrospun lignin-based carbon nanofibers as supercapacitor electrodes. ACS Sustain Chem Eng. 2020;8:12831. https://doi.org/10.1021/acssuschemeng.0c03062.

    Article  CAS  Google Scholar 

  90. Wu H, Liu CK, Jiang ZW, Yang Z, Mao X, Wei L, Sun RJ. Electrospun flexible lignin/polyacrylonitrile-based carbon nanofiber and its application in electrode materials for supercapacitors. Text Res J. 2022;92(3–4):456. https://doi.org/10.1177/00405175211037191.

    Article  CAS  Google Scholar 

  91. Liu B, Liu YJ, Chen HB, Yang M, Li HM. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources. 2017;341:309. https://doi.org/10.1016/j.jpowsour.2016.12.022.

    Article  CAS  Google Scholar 

  92. He DP, Niu J, Dou ML, Ji J, Huang YQ, Wang F. Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochim Acta. 2017;238:310. https://doi.org/10.1016/j.electacta.2017.03.218.

    Article  CAS  Google Scholar 

  93. Yuan CQ, Liu XH, Jia MY, Luo ZX, Yao JN. Facile preparation of N- and O-doped hollow carbon spheres derived from poly (o-phenylenediamine) for supercapacitors. J Mater Chem A. 2015;3:3409. https://doi.org/10.1039/c4ta06411a.

    Article  CAS  Google Scholar 

  94. Yang LY, Shui JL, Du L, Shao YY, Liu J, Dai LM, Hu Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater. 2019;31:1804799. https://doi.org/10.1002/adma.201804799.

    Article  CAS  Google Scholar 

  95. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater. 2010;22:5202. https://doi.org/10.1002/adma.201002647.

    Article  CAS  Google Scholar 

  96. Lee YH, Chang KH, Hu CC. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources. 2013;227:300. https://doi.org/10.1016/j.jpowsour.2012.11.026.

    Article  CAS  Google Scholar 

  97. Li B, Dai F, Xiao QF, Yang L, Shen JM, Zhang CM, Cai M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci. 2016;9(1):102. https://doi.org/10.1039/c5ee03149d.

    Article  CAS  Google Scholar 

  98. Deng YF, Xie Y, Zou KX, Ji XL. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A. 2016;4(4):1144. https://doi.org/10.1039/c5ta08620e.

    Article  CAS  Google Scholar 

  99. Tian KS, Wang JY, Cao L, Yang W, Guo WC, Liu SH, Li W, Wang FY, Li XA, Xu ZP, Wang ZB, Wang HY, Hou YL. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nature Commun. 2020;11:3884. https://doi.org/10.1038/s41467-020-17727-y.

    Article  CAS  Google Scholar 

  100. Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680. https://doi.org/10.1007/s12598-020-01412-6.

    Article  CAS  Google Scholar 

  101. Feng X, Bai Y, Liu MQ, Li Y, Yang HY, Wang XR, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ Sci. 2021;14(4):2036. https://doi.org/10.1039/d1ee00166c.

    Article  CAS  Google Scholar 

  102. Liu SM, Cai YJ, Zhao X, Liang YR, Zheng MT, Hu H, Dong HW, Jiang SP, Liu YL, Xiao Y. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J Power Sources. 2017;360:373. https://doi.org/10.1016/j.jpowsour.2017.06.029.

    Article  CAS  Google Scholar 

  103. Yu GH, Hu LB, Liu N, Wang HL, Vosgueritchian M, Yang Y, Cui Y, Bao ZN. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011;11(10):4438. https://doi.org/10.1021/nl2026635.

    Article  CAS  Google Scholar 

  104. Zhao YS, Lei ZB, Zhang JT. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem. 2012;22:153. https://doi.org/10.1039/C1JM13872C.

    Article  Google Scholar 

  105. Zhang JY, Yang XF, He YB, Bai YL, Kang LP, Xu H, Shi F, Lei ZB, Liu ZH. δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem. 2016;4:9088. https://doi.org/10.1039/c6ta02989b.

    Article  CAS  Google Scholar 

  106. Wang QF, Ma Y, Liang X, Zhang DH, Miao MH. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem Eng J. 2019;371:145. https://doi.org/10.1016/j.cej.2019.04.021.

    Article  CAS  Google Scholar 

  107. Zhang L, Tian Y, Song CX, Qiu H, Xue H. Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers. J Alloys Compd. 2021;859:157816. https://doi.org/10.1016/j.jallcom.2020.157816.

    Article  CAS  Google Scholar 

  108. Singu BS, GoDa ES, Yoon KR. Carbon nanotube-manganese oxide nanorods hybrid composites for high-performance supercapacitor materials. J Ind Eng Chem. 2021;97:239. https://doi.org/10.1016/j.jiec.2021.02.002.

    Article  CAS  Google Scholar 

  109. Zhai YP, Zhang BW, Shi R, Zhang SY, Liu Y, Wang BY, Zhang K, Geoffrey IN, Zhang TR, Lu SY. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Adv Energy Mater. 2021;12(6):2103426. https://doi.org/10.1002/aenm.202103426.

    Article  CAS  Google Scholar 

  110. Ji ZY, Liu K, Chen LZ, Nie YJ, Pasang D, Yu Q, Shen XP, Xu KQ, Premlatha S. Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors. J Colloid Interf Sci. 2021;609:503. https://doi.org/10.1016/j.jcis.2021.11.055.

    Article  CAS  Google Scholar 

  111. Zhang X, Bu ZL, Xu R, Xie B, Li HY. V2O3 nanofoam@activated carbon composites as electrode materials of supercapacitors. Funct Mater Lett. 2017;10(6):1750077. https://doi.org/10.1142/s1793604717500771.

    Article  CAS  Google Scholar 

  112. Zhang LY, Shi DW, Liu T, Jaroniec M, Yu JG. Nickel-based materials for supercapacitors. Mater Today. 2019;25:35. https://doi.org/10.1016/j.mattod.2018.11.002.

    Article  CAS  Google Scholar 

  113. Srikant S, Ashis KS, Prasanta KS, Prakash DN. Incorporation of carbon quantum dots for improvement of supercapacitor performance of nickel sulfide. ACS Omega. 2018;3:17936. https://doi.org/10.1021/acsomega.8b01238.

    Article  CAS  Google Scholar 

  114. Ji ZY, Liu K, Dai WY, Ma DW, Zhang HY, Shen XP, Zhu GX, Wu SK. High energy density hybrid supercapacitor based on cobalt-doped nickel sulfideflower-like hierarchitectures deposited with nitrogen-doped carbon dots. Nanoscale. 2021;13:1689. https://doi.org/10.1039/d0nr07851d.

    Article  CAS  Google Scholar 

  115. Chang CC, Geleta TA, Imate T. Effect of carbon dots on supercapacitor performance of carbon nanohorn/conducting polymer composites. B Chem Soc Jpn. 2021;94(2):454. https://doi.org/10.1246/bcsj.20200269.

    Article  CAS  Google Scholar 

  116. Ben JW, Song ZY, Liu XK, Lv W, Li XH. Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors. Nanoscale Res Lett. 2020;15:151. https://doi.org/10.1186/s11671-020-03379-w.

    Article  CAS  Google Scholar 

  117. Zhang X, Wang JM, Liu J, Wu J, Chen H, Bi H. Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: importance and unique role of carbon dots. Carbon. 2017;115:134. https://doi.org/10.1016/j.carbon.2017.01.005.

    Article  CAS  Google Scholar 

  118. Jin LN, Shao F, Jin C, Zhang JN, Guo MX, Bian SW. High-performance textile supercapacitor electrode materials enhanced with three-dimensional carbon nanotubes/graphene conductive network and in situ polymerized polyaniline. Electrochim Acta. 2017;249:387. https://doi.org/10.1016/j.electacta.2017.08.035.

    Article  CAS  Google Scholar 

  119. Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma YW. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources. 2011;196:5990. https://doi.org/10.1016/j.jpowsour.2011.02.090.

    Article  CAS  Google Scholar 

  120. Ghosh T, Ghosh R, Basak U, Majumdar S, Ball R, Mandal D, Nandi AK, Chatterjee DP. Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors. J Mater Chem A. 2018;6(15):6476. https://doi.org/10.1039/c7ta11050b.

    Article  CAS  Google Scholar 

  121. Jian X, Li JG, Yang HM, Cao LL, Zhang EH, Liang ZH. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon. 2017;114:533. https://doi.org/10.1016/j.carbon.2016.12.033.

    Article  CAS  Google Scholar 

  122. Lv HP, Gao XJ, Xu QJ, Liu HM, Wang YG, Xia YY. Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl Mater Interf. 2017;9(46):40394. https://doi.org/10.1021/acsami.7b14761.

    Article  CAS  Google Scholar 

  123. Jia HN, Cai YF, Lin JH, Liang HY, Qi JL, Cao J, Feng JC, Fei WD. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv Sci. 2018;5(5):1700887. https://doi.org/10.1002/advs.201700887.

    Article  CAS  Google Scholar 

  124. Zhu YR, Wu ZB, Jing MJ, Hou HS, Yang YC, Zhang Y, Yang XM, Song WX, Jia XN, Ji XB. Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A. 2015;3(2):866. https://doi.org/10.1039/c4ta05507a.

    Article  CAS  Google Scholar 

  125. Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD. Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta. 2013;92:205. https://doi.org/10.1016/j.electacta.2012.12.120.

    Article  CAS  Google Scholar 

  126. Unnikrishnan B, Wu CW, Chen IP, Chang HT, Lin CH, Huang CC. Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain Chem Eng. 2016;4(6):3008. https://doi.org/10.1021/acssuschemeng.5b01700.

    Article  CAS  Google Scholar 

  127. Li ZX, Yang BL, Zou KY, Kong LJ, Yue ML, Duan HH. Novel porous carbon nanosheet derived from a 2D Cu-MOF: ultrahigh porosity and excellent performances in the supercapacitor cell. Carbon. 2019;144:540. https://doi.org/10.1016/j.carbon.2018.12.061.

    Article  CAS  Google Scholar 

  128. Zhou DD, Zhang XW, Mo ZW, Xu YZ, Tian XY, Li Y, Chen XM, Zhang JP. Adsorptive separation of carbon dioxide: from conventional porous materials to metal-organic frameworks. EnergyChem. 2019;1:100016. https://doi.org/10.1016/j.enchem.2019.100016.

    Article  Google Scholar 

  129. Yu H, Zhu WJ, Zhou H, Liu JF, Yang Z, Hu XC, Yuan AH. Porous carbon derived from metal–organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries. RSC Adv. 2019;9:9577. https://doi.org/10.1039/c9ra01488h.

    Article  CAS  Google Scholar 

  130. Tang ZY, Zhang GH, Zhang H, Wang L, Shi HM, Wei DH, Duan HG. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. 2018;10:75. https://doi.org/10.1016/j.ensm.2017.08.009.

    Article  Google Scholar 

  131. Zhou XF, Chen LL, Zhang WH, Wang JW, Liu ZJ, Zeng SF, Xu R, Wu Y, Ye SF, Feng YZ, Cheng XL, Peng ZQ, Li XF, Yu Y. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019;19:4965. https://doi.org/10.1021/acs.nanolett.9b01127.

    Article  CAS  Google Scholar 

  132. Rehman S, Ahmed R, Ma K, Xu S, Tao TX, Aslam MA, Amir M, Wang JF. Composite of strip-shaped ZIF-67 with polypyrrole: aconductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci. 2021;13:71. https://doi.org/10.30919/es8d1263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52172033 and 22005280), Anhui Province Key Research and Development Plan Project International Science and Technology Cooperation Special Project (No. 202004b11020015). We acknowledge the support of the Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China and the Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, China. We also acknowledge the support of the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Bi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YX., Ge, KK., ur Rehman, S. et al. Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 41, 3957–3975 (2022). https://doi.org/10.1007/s12598-022-02091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02091-1

Keywords

Navigation