Skip to main content
Log in

A novel electrolytic-manganese-residues-and-serpentine-based composite (S-EMR) for enhanced Cd(II) and Pb(II) adsorption in aquatic environment

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electrolytic manganese residue (EMR) is the waste slag generated from the electrolysis manganese industry. As a promising exploitable adsorbent, EMR has become a hot research topic. However, EMR’s low adsorption capacity has limited its applications as an efficient adsorbent. In this study, the EMR was mixed with serpentine and calcined (at 800 °C for 2 h) to prepare a composite adsorbent (S-EMR) with its specific surface area of 11.998 m2·g−1 (increased compared to the original EMR) and improved adsorption capacities for Cd2+ (98.05 mg·g−1) and Pb2+ (565.81 mg·g−1). Kinetic studies have shown that the pseudo-first-order kinetics (PSO) model could best describe the adsorption kinetics of S-EMR for Cd2+/Pb2+, implying that the chemisorption process is the rate-limiting step. The effects of different interfering ions on S-EMR’s adsorption for Cd2+/Pb2+ may be due to the difference in their electronegativity. Results of response surface methodology tests showed that pH had the highest influence on adsorption, and the removal efficiency of S-EMR reached 99.92% for Cd(II) and 94.00% for Pb(II). X-ray photoelectron spectroscopy (XPS) analyses revealed that chemical precipitation was the predominant mechanism for Cd2+/Pb2+ removal, and the adsorption mechanisms were associated with ion exchange and electrostatic attraction. The results showed that S-EMR could be used as an effective adsorbent for the removal of Cd(II)/Pb(II) from water bodies, rendering dual benefits of pollution control and resource recovery.

Graphical abstract

摘要

电解锰渣是电解锰工业产生的废渣。 EMR作为一种具有开发潜力的吸附剂, 已成为研究的热点。 然而, EMR的低吸附量限制了其作为一种高效吸附剂的应用。 在这项研究中, 将EMR与蛇纹石混合并煅烧 (在800 oC下煅烧2 h), 以制备一种复合吸附剂 (S-EMR), 其比表面积 (SSA) 为11.998 m2·g−1 (与原EMR相比有所增加), 并提高了对Cd2+ (98.05 mg·g−1) 和Pb2+ (565.81 mg·g−1) 的吸收能力。动力学研究表明, 伪一级动力学模型(pseudo-first-order kinetics, PSO)能较好地描述S-EMR对Cd2+/Pb2+的吸附动力学, 表明化学吸附过程是一个限速步骤。 不同干扰离子对S-EMR吸附Cd2+/Pb2+的影响可能是由于它们的电负性不同所致。 响应面法测试结果表明, pH对S-EMR吸附性能影响最大, S-EMR对Cd(II)的去除率达到99.92%, 对Pb(II)的去除率达到94.00%。 X射线光电子能谱(XPS)分析表明, 化学沉淀法是去除Cd2+/Pb2+的主要机制, 吸附机制与离子交换和静电吸引有关。 结果表明, S-EMR可作为水体中Cd(II)/Pb(II)的有效吸附剂, 具有污染控制和资源回收双重效益。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li J, Du DY, Peng QJ, Wu CJ, Lv KL, Ye HP, Chen SH, Zhan W. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting. J Clean Prod. 2018;192:347.

    Article  CAS  Google Scholar 

  2. Zhang Y, Liu X, Xu Y, Tang B, Wang Y. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization. J Hazard Mater. 2020;390:122188.

    Article  CAS  Google Scholar 

  3. Zhou C, Du B, Wang N, Chen Z. Preparation and strength property of autoclaved bricks from electrolytic manganese residue. J Clean Prod. 2014;84:701.

    Article  Google Scholar 

  4. Wang J, Peng B, Chai L, Zhang Q, Liu Q. Preparation of electrolytic manganese residue–ground granulated blastfurnace slag cement. Powder Technol. 2013;241:12.

    Article  CAS  Google Scholar 

  5. Xin B, Chen B, Duan N, Zhou C. Extraction of manganese from electrolytic manganese residue by bioleaching. Biores Technol. 2011;102(2):1683.

    Article  CAS  Google Scholar 

  6. Lan J, Sun Y, Chen X, Zhan W, Du Y, Zhang TC, Ye H, Du D, Hou H. Bio-leaching of manganese from electrolytic manganese slag by microbacterium trichothecenolyticum Y1: mechanism and characteristics of microbial metabolites. Biores Technol. 2021;319:124056.

    Article  CAS  Google Scholar 

  7. Shu J, Liu R, Wu H, Liu Z, Sun X, Tao C. Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis. J Taiwan Inst Chem Eng. 2018;82:351.

    Article  CAS  Google Scholar 

  8. Lan JR, Sun Y, Guo L, Du YG, Du DY, Zhang TC, Li J, Ye HP. Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J Alloy Compd. 2019;811:151973.

    Article  CAS  Google Scholar 

  9. Li C, Zhong H, Wang S, Xue J, Zhang Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J Ind Eng Chem. 2015;23:344.

    Article  CAS  Google Scholar 

  10. Ma M, Du Y, Bao S, Li J, Wei H, Lv Y, Song X, Zhang T, Du D. Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci Total Environ. 2020;748:141490.

    Article  CAS  Google Scholar 

  11. Lan J, Sun Y, Huang P, Du Y, Zhan W, Zhang TC, Du D. Using electrolytic manganese residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes. Chemosphere. 2020;252:126487.

    Article  CAS  Google Scholar 

  12. Sun Z, Zheng L, Zheng S, Frost RL. Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(VI). J Colloid Interface Sci. 2013;404:102.

    Article  CAS  Google Scholar 

  13. Li Z, Huang P, Hu H, Zhang Q, Chen M. Efficient separation of Zn(II) from Cd(II) in sulfate solution by mechanochemically activated serpentine. Chemosphere. 2020;258:127275.

    Article  CAS  Google Scholar 

  14. Cao CY, Liang CH, Yin Y, Du LY. Thermal activation of serpentine for adsorption of cadmium. J Hazard Mater. 2017;329:222.

    Article  CAS  Google Scholar 

  15. Qin Q, Wang Q, Fu D, Ma J. An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J. 2011;172(1):68.

    Article  CAS  Google Scholar 

  16. Yang T, Wang Y, Sheng L, He C, Sun W, He Q. Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J Environ Manag. 2020;255:109866.

    Article  CAS  Google Scholar 

  17. Zhao DL, Chen SH, Yang SB, Yang X, Yang ST. Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem Eng J. 2011;166(3):1010.

    Article  CAS  Google Scholar 

  18. Zhang L, Tang S, He F, Liu Y, Mao W, Guan Y. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem Eng J. 2019;378:122215.

    Article  CAS  Google Scholar 

  19. Feng HF, Yu YX, Jiang SQ, Shang J, Cheng Y, Wang L, Hao WC, Wang TM. Synthesis of magnetic core–shell iron nanochains for potential applications in Cr(VI) ion pollution treatment. Rare Met. 2021;40(1):1.

    Article  Google Scholar 

  20. Hu QL, Wang LS, Yu NN, Zhang ZF, Zheng X, Hu XM. Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption. Rare Met. 2020;39(11):1333.

    Article  Google Scholar 

  21. Chen G, Shah KJ, Shi L, Chiang PC. Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms. Appl Surf Sci. 2017;409:296.

    Article  CAS  Google Scholar 

  22. Aljerf L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. J Environ Manage. 2018;225:120.

    Article  CAS  Google Scholar 

  23. Weber W, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;1:1.

    CAS  Google Scholar 

  24. Ye C, Ruan Q, Huang S, Li L. Study on the adsorption statics and kinetics of sisomicin on marcoporous weakly basic acid resins—LDF model and determination of effective diffusion coefficient. Front Sep Sci Technol. 2004. https://doi.org/10.1142/9789812702623_0096.

    Article  Google Scholar 

  25. Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater. 2015;297:251.

    Article  CAS  Google Scholar 

  26. Ghorbani F, Kamari S. Application of response surface methodology for optimization of methyl orange adsorption by Fe-grafting sugar beet bagasse. Adsorpt Sci Technol. 2016;35(3–4):317.

    Google Scholar 

  27. Kamari S, Ghorbani F. Synthesis of magMCM-41 with rice husk silica as cadmium sorbent from aqueous solutions: parameters’ optimization by response surface methodology. Environ Technol. 2016;38(12):1562.

    Article  Google Scholar 

  28. Li J, Sun P, Li J, Lv Y, Ye H, Shao L, Du D. Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength. Constr Build Mater. 2020;248:118489.

    Article  CAS  Google Scholar 

  29. Sirviö JA, Visanko M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water. J Hazard Mater. 2020;383:121174.1.

    Article  Google Scholar 

  30. Yang H, Lu M, Chen D, Chen R, Li L, Han W. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study. J Colloid Interface Sci. 2020;563:218.

    Article  CAS  Google Scholar 

  31. Zhao J, Liu J, Li N, Wang W, Nan J, Zhao Z, Cui F. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study. Chem Eng J. 2016;304:304737.

    Article  Google Scholar 

  32. Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Biores Technol. 2017;245:266.

    Article  CAS  Google Scholar 

  33. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451.

    Article  CAS  Google Scholar 

  34. Miretzky P, Muñoz C. Enhanced metal removal from aqueous solution by Fenton activated macrophyte biomass. Desalination. 2011;271(1):20.

    Article  CAS  Google Scholar 

  35. Albadarin AB, Mangwandi C, Al-Muhtaseb AAH, Walker GM, Allen SJ, Ahmad MNM. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J. 2012;179:193.

    Article  CAS  Google Scholar 

  36. Gan M, Sun S, Zheng Z, Tang H, Sheng J, Zhu J, Liu X. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite. Appl Surf Sci. 2015;356:986.

    Article  CAS  Google Scholar 

  37. Smiljanić S, Smičiklas I, Perić-Grujić A, Šljivić M, Đukić B, Lončar B. Study of factors affecting Ni2+ immobilization efficiency by temperature activated red mud. Chem Eng J. 2011;168(2):610.

    Article  Google Scholar 

  38. Zheng SA, Zheng X, Chen C. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. PLoS ONE. 2012;7(11):e49664.

    Article  CAS  Google Scholar 

  39. Zhou G, Luo J, Liu C, Chu L, Crittenden J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018;131:246.

    Article  CAS  Google Scholar 

  40. Hadi P, Barford J, McKay G. Toxic heavy metal capture using a novel electronic waste-based material - mechanism, modeling and comparison. Environ Sci Technol. 2013;47(15):8248.

    CAS  Google Scholar 

  41. Yang GX, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014;48:396.

    Article  CAS  Google Scholar 

  42. Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag. 2015;153:68.

    Article  CAS  Google Scholar 

  43. Wang T, Liu W, Xiong L, Xu N, Ni J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J. 2013;215:366.

    Article  Google Scholar 

  44. Peng ZD, Lin XM, Zhang YL, Hu Z, Yang XJ, Chen CY, Chen HY, Li YT, Wang JJ. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci Total Environ. 2021;772(1):145355.

    Article  CAS  Google Scholar 

  45. Sahu MK, Mandal S, Yadav LS, Dash SS, Patel RK. Equilibrium and kinetic studies of Cd(II) ion adsorption from aqueous solution by activated red mud. Desalin Water Treat. 2016;57(30):14251.

    Article  CAS  Google Scholar 

  46. Yu S, Zhai L, Wang Y, Liu X, Xu L, Cheng L. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. J Environ Chem Eng. 2015;3(2):752.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Open-Up and Innovation Funds of Hubei Three Gorges Laboratory (No. SK211004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MY., Ke, X., Liu, YC. et al. A novel electrolytic-manganese-residues-and-serpentine-based composite (S-EMR) for enhanced Cd(II) and Pb(II) adsorption in aquatic environment. Rare Met. 42, 346–358 (2023). https://doi.org/10.1007/s12598-022-02042-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02042-w

Keywords

Navigation