Skip to main content
Log in

Highly Efficient Removal of Cu(II) with Modified Electrolytic Manganese Residue as A Novel Adsorbent

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrolytic manganese residue (EMR) is a solid waste generated during the process of electrolytic manganese production, and stockpiling EMR causes serious pollution. Therefore, the resource utilization of EMR is receiving increasing attention. In this study, EMR is modified by KOH and ultrasonic etching. The modified electrolytic manganese residue (M-EMR) was used as a novel adsorbent to remove Cu(II). The results showed that the Cu(II) concentration in the liquid decreased from 80 to 0.047 mg/L when the dosage of M-EMR was 1.2 g/L, the pH value was 6, and contact time was 40 min. The maximum theoretical adsorption capacity of M-EMR for Cu(II) was 114.286 mg/g. The kinetic data of adsorption conform to the pseudo-second-order model. The equilibrium isotherm results are consistent with the Langmuir isotherm equation. Adsorption thermodynamics indicate that the adsorption is a spontaneous endothermic reaction and mainly based on chemisorption. Furthermore, plausible mechanisms were proposed: EMR was modified to M-EMR that has a strong ability to remove Cu(II). The main reason is that Cu(II) can react with Fe3O4, FeOOH, and MnO2 that are on the surface of M-EMR. MnO2, Fe3O4, SiO2 and some part of the Cu(II) on the surface of the sample were adsorbed by van der Waals force, and the remaining Cu(II) was adsorbed on the surface of M-EMR by electrostatic attraction. Preliminary analysis indicates the application potential of M-EMR in Cu-contaminated industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qinggang, W.; Shu, Y.; Wenqing, M.; Yedong, R.; Shuhao, Z.; Jinlong, Y.: Preparation of coal gangue/bentonite composite microspheres and their adsorption properties for copper ions and methylene blue. J. Funct. Mater. 49, 12151–12160 (2018)

    Google Scholar 

  2. Guleria, A.; Kumari, G.; Lima, E.C. Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters. Carbohyd. Polym. 2020, 228.

  3. Lan, J.; Sun, Y.; Guo, L.; Du, Y.; Du, D.; Zhang, T.C.; Li, J.; Ye, H. Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J. Alloy. Compd. 2019, 811.

  4. Anirudhan, T.S.; Divya, L.; Bringle, C.D.; Suchithra, P.S.: Removal of Copper(II) and Zinc(II) from aqueous solutions using a lignocellulosic-based polymeric adsorbent containing amidoxime chelating functional groups. Sep. Sci. Technol. 45, 2383–2393 (2010)

    Article  Google Scholar 

  5. Rajeshkumar, S.; Liu, Y.; Zhang, X.; Ravikumar, B.; Bai, G.; Li, X. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere. 2018, S1985040220.

  6. Zhang, Z.; Wen, Y.; Liu, W.; Tairan, W.U. Polluted characteristics of heavy metals in surrounding environment near a Pb-Zn mine tailing in Sichuan Province. Enviro. Pollut. Control. 2016.

  7. Singha, A.S.; Guleria, A.: Functionalized cellulosic fibers for removal of toxic metal ions from contaminated water. Int. J. Polym. Anal. Charact. 19, 10–21 (2014)

    Article  Google Scholar 

  8. Kamel, S.; Abou-Yousef, H.; Yousef, M.; EI-Sakhawy, M.: Potential use of bagasse and modified bagasse for removing of iron and phenol from water. Carbohyd. Polym. 88, 250–256 (2012)

    Article  Google Scholar 

  9. Ofomaja, A.E.; Naidoo, E.B.: Biosorption of copper from aqueous solution by chemically activated pine cone: a kinetic study. Chem. Eng. J. 175, 260–270 (2011)

    Article  Google Scholar 

  10. Peng, W.; Xie, Z.; Cheng, G.; Shi, L.; Zhang, Y.: Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions. J. Hazard. Mater. 294, 9–16 (2015)

    Article  Google Scholar 

  11. Harja, M.; Buema, G.; Sutiman, D.; Munteanu, C.; Bucur, D.: Low cost adsorbents obtained from ash for copper removal. Korean J. Chem. Eng. 29, 1735–1744 (2012)

    Article  Google Scholar 

  12. Qiu, B.; Duan, F.; He, G.: Value adding industrial solid wastes: impact of industrial solid wastes upon copper removal performance of synthesized low cost adsorbents. Energ. Source. Part a. 42, 835–848 (2020)

    Article  Google Scholar 

  13. Seol, J.W.; Kim, S.H.; Lee, W.C.; Cho, H.G.; Kim, S.O. Characterization of arsenic sorption on manganese slag. J. Mineralogic. Soc. Korea. 2013, 26.

  14. Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Du, J.; Tao, C.: Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO. J. Hazard. Mater. 317, 267–274 (2016)

    Article  Google Scholar 

  15. Shu, J.; Li, B.; Chen, M.; Sun, D.; Wei, L.; Wang, Y.; Wang, J. An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material. Chemosphere. 2020, 253.

  16. Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y.; Mukiza, E.: Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties. Constr. Build. Mater. 220, 364–374 (2019)

    Article  Google Scholar 

  17. Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y.; Mukiza, E.: Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue. J. Clean. Prod. 232, 980–992 (2019)

    Article  Google Scholar 

  18. Xu, W.; Yang, B.; Jia, F.; Chen, T.; Yang, L.; Song, S.: Removal of As(V) from aqueous solution by using cement-porous hematite composite granules as adsorbent. Results Phys. 11, 23–29 (2018)

    Article  Google Scholar 

  19. Maziarz, P.; Matusik, J.; Leiviska, T.; Strazek, T.; Kapusta, C.; Woch, W.M.; Tokarz, W.; Gorniak, K.: Toward highly effective and easily separable halloysite-containing adsorbents: The effect of iron oxide particles impregnation and new insight into As(V) removal mechanisms. Sep. Purif. Technol. 210, 390–401 (2019)

    Article  Google Scholar 

  20. Yang, C.; Lv, X.; Tian, X.; Wang, Y.; Komarneni, S.: An investigation on the use of electrolytic manganese residue as filler in sulfur concrete. Constr. Build. Mater. 73, 305–310 (2014)

    Article  Google Scholar 

  21. Shu, J.; Wu, Y.; Ji, Y.; Chen, M.; Wu, H.; Gao, Y.; Wei, L.; Zhao, L.; Huo, T.; Liu, R. A new electrochemical method for simultaneous removal of Mn2+ and NH4+-N in wastewater with Cu plate as cathode. Ecotox. Environ. Safe. 2020, 206.

  22. Wang, Y.; Yang, Z.; Peng, B.; Chai, L.; Wu, B.; Wu, R.: Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environ. Sci. Pollut. R. 20, 5593–5602 (2013)

    Article  Google Scholar 

  23. Wang, M.; Wang, Y.; Tan, W.; Liu, F.; Feng, X.; Koopal, L.K.: Effect of 1–1 electrolyte concentration on the adsorption/desorption of copper ion on synthetic birnessite. J. Soil. Sediment. 10, 879–885 (2010)

    Article  Google Scholar 

  24. Lan, J.; Sun, Y.; Guo, L.; Li, Z.; Du, D.; Zhang, T.C.: A novel method to recover ammonia, manganese and sulfate from electrolytic manganese residues by bio-leaching. J. Clean. Prod. 223, 499–507 (2019)

    Article  Google Scholar 

  25. Shu, J.; Wu, H.; Chen, M.; Wei, L.; Wang, B.; Li, B.; Liu, R.; Liu, Z.: Simultaneous optimizing removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using chemical equilibrium model. Ecotox. Environ. Safe. 172, 273–280 (2019)

    Article  Google Scholar 

  26. Xie, H.; Zhang, L.; Chen, G.; Koppala, S.; Li, S.; Wang, Y.; Long, H. High temperature roasting combined with ultrasonic enhanced extracting lead from electrolytic manganese anode mud. Mater. Res. Exp. 2019, 6.

  27. Listyawan, T.A.; Lee, H.; Park, N.; Lee, U.: Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process. J. Mater. Sci. Technol. 57, 123–130 (2020)

    Article  Google Scholar 

  28. Chinnapaiyan, S.; Chen, T.; Chen, S.; Alothman, Z.A.; Ali, M.A.; Wabaidur, S.M.; Al-Hemaid, F.; Lee, S.; Chang, W. Ultrasonic-assisted preparation and characterization of magnetic ZnFe2O4/g-C3N4 nanomaterial and their applications towards electrocatalytic reduction of 4-nitrophenol. Ultrason. Sonochem. 2020, 68.

  29. AbuTaleb, M.; Kumar, R.; Al-Rashdi, A.A.; Seliem, M.K.; Barakat, M.A.: Fabrication of SiO2/CuFe2O4/polyaniline composite: A highly efficient adsorbent for heavy metals removal from aquatic environment. Arab. J. Chem. 13, 7533–7543 (2020)

    Article  Google Scholar 

  30. Zhao, L.; Zhang, Q.; Li, X.; Ye, J.; Chen, J. Adsorption of Cu(II) by phosphogypsum modified with sodium dodecyl benzene sulfonate. J. Hazard. Mater. 2020, 387.

  31. Zahar, M.M.S.; Kusin, F.M.; Mohamed, K.N.; Masri, N.: Treatment of acid mine drainage (AMD) using industrial by-product: sorption behavior of steel slag for metal-rich mine water. Global NEST J. 22, 258–267 (2020)

    Google Scholar 

  32. Lin, L.; Yu, Y.: Adsorption of Pb2+ and Cu2+ with unburned desulphurization slag modified nickel slag. Chinese J. Struc. Chem. 36, 491–502 (2017)

    Google Scholar 

  33. Grace, M.A.; Healy, M.G.; Clifford, E.: Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water. Sci. Total Environ. 518, 491–497 (2015)

    Article  Google Scholar 

  34. Liu, X.; Zhang, H.; Song, Z.; Guo, L.; Fu, F.; Wu, Y.: A ratiometric nanoprobe for biosensing based on green fluorescent graphitic carbon nitride nanosheets as an internal reference and quenching platform. Biosens. Bioelectron. 129, 118–123 (2019)

    Article  Google Scholar 

  35. Wang, X.; Yang, P.; Feng, Q.; Meng, T.; Wei, J.; Xu, C.; Han, J. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging. Polymers-Basel. 2019, 11.

  36. Frost, R.L.; Keeffe, E.C.: The mixed anion mineral parnauite Cu-9[(OH)(10)vertical bar SO4 vertical bar(AsO4)(2)]center dot 7H(2)O-A Raman spectroscopic study. Spectrochim. Acta a. 81, 111–116 (2011)

    Article  Google Scholar 

  37. Chiet, E.C.; Azowa, I.N.; Norhazlin, Z.; Hidayah, A.; Wan, Y.W.M.Z.; Yee, T.Y.; Chean, T.C.: Enhancement of mechanical and thermal properties of polylactic acid/polycaprolactone blends by hydrophilic nanoclay. Indian J. Mater. Sci. 11, 233–240 (2013)

    Google Scholar 

  38. Xin, C.; Ping, Z.; Long, Y.: Separation properties of alcohol-water mixture through silicalite-I-filled silicone rubber membranes by pervaporation. J. Appl. Polym. Sci. 67, 629–636 (2015)

    Google Scholar 

  39. Peng, N.; Pan, Q.; Liu, H.; Yang, Z.; Wang, G.: Recovery of iron and manganese from iron-bearing manganese residues by multi-step roasting and magnetic separation. Miner. Eng. 126, 177–183 (2018)

    Article  Google Scholar 

  40. Kim, H.J.; Choi, H.; Sharma, A.K.; Hong, W.G.; Shin, K.; Song, H.; Kim, H.Y.; Hong, Y.J. Recyclable aqueous metal adsorbent: Synthesis and Cu(II) sorption characteristics of ternary nanocomposites of Fe3O4 nanoparticles@graphene-poly-N-phenylglycine nanofibers. J. Hazard. Mater. 2021, 401, 123283.

  41. Xiao, J.; Hu, R.; Chen, G.; Xing, B. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism. J. Hazard. Mater. 2020, 399.

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018YFC1903500).

Author information

Authors and Affiliations

Authors

Contributions

YH and QZ were involved in conceptualization, validation, writing—review and editing; YH contributed to methodology, software, formal analysis, investigation; QZ was involved in resource; YH contributed to data curation, writing—original draft preparation, visualization; QZ was involved in supervision, project administration, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Qin Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, Q. Highly Efficient Removal of Cu(II) with Modified Electrolytic Manganese Residue as A Novel Adsorbent. Arab J Sci Eng 47, 6577–6589 (2022). https://doi.org/10.1007/s13369-021-06506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06506-6

Keywords

Navigation